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Foreword

This textbook is based on a series of lectures given by Prof. Claude Amsler at the
Stefan Meyer Institute for Subatomic Physics of the Austrian Academy of Sciences
in Vienna, 2016. The guest lecture was held within the framework of the graduate
school (Doktoratskolleg) Particles & Interactions, DKPI, funded by the Austrian
Science Fund FWF and encompassing all faculty in Vienna working in particle and
nuclear physics at the University of Vienna, the Vienna University of Technology
(TU Wien), the Institute for High Energy Physics HEPHY of the Austrian Academy
of Sciences, and the Stefan Meyer Institute.

The author is one of the leading experts in the field of hadron spectroscopy.
He is a member of the meson team of the Particle Data Group since 1995, and
has contributed to several chapters on the quark model and hadron structure of the
annual Review of Particle Properties. He participated in many experiments, most
notably in the Crystal Barrel experiment at CERN/LEAR, studying mesons created
by antiproton-proton annihilation, and wrote numerous review articles on this
subject. Recently he also got involved in experiments at the Antiproton Decelerator
of CERN.

The text is aimed at advanced students in hadron physics and describes in detail
the experimental and phenomenological basis of hadron structure as well as the
underlying quark model. It is a complete and detailed account of this subject and
includes a description of virtually all known hadrons, including the most recently
discovered exotic states and their potential interpretation as multi-quark states. The
text addresses in particular experimentalists who would like to better understand
the foundations of their research. It is very timely and welcome as an update and
extension of the textbook by the same author on Nuclear and Particle Physics,
published in 2015 as a broad introductory course of the whole field.

Speaker of the Graduate School DKPI, TU Wien, Prof. Anton Rebhan
Vienna, Austria

Director, Stefan Meyer Institute of the Austrian Prof. Eberhard Widmann
Academy of Sciences, Vienna, Austria
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Chapter 1
Introduction

Particles which interact through the strong interaction are called hadrons (from
the Greek word for “strong”). They are divided into two classes, baryons (for
“heavy”) with half-integer spins and mesons (for “medium” heavy) with integer
spins. Baryons include their antimatter counterparts, the antibaryons. The total
number of baryons minus that of antibaryons remains constant in any physical
process, while mesons can be created or destroyed (provided that energy permits
and electric charge is conserved).

Hadrons are not elementary (point-like) particles, but composite structures with
finite dimensions, made of partons: quarks, antiquarks and gluons. The word
“parton” was coined in 1969 by Richard Feynman in the context of deep inelastic
scattering. Quarks were proposed in 1963 by Murray Gell-Mann, Yuval Ne’eman,
André Petermann and George Zweig, as a bookkeeping tool to reduce the large
number of known hadrons. In the words of Gell-Mann “such particles presumably
are not real, but we may use them in our field theory anyway”. Today we know,
e.g. from the scaling law in deep inelastic scattering, the observation of particle
jets at high energy colliders, and—as we shall see—from the observation of γ -
transitions in quark-antiquark bound systems (quarkonia), that quarks and gluons
are real entities that, however, remain confined in hadrons.

Baryons consist of three quarks (qqq), mesons of quark-antiquark pairs (qq).
The word “quark” was introduced by Gell-Mann, inspired by the sentence “Three
quarks for Muster Mark” in James Joyce’s novel Finnegans Wake (1939). Joyce
was apparently thinking of the German word for cottage cheese, also meaning
“rubbish” or “nonsense”. Perhaps the origin of the word can be found even earlier
in Mephisto’s words “in jeden Quark begräbt er seine Nase” (“in every rubbish he
lays his nose”, Goethe’s Faust, 1808) [1].

Quarks are spin- 1
2 fermions and have by convention positive parity, while

antiquarks have negative parity (Sect. 2.1). There are three families (or generations)
of quarks, made of the up, down, charm, strange, top (or true) and bottom (or beauty)
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Table 1.1 The quantum
numbers of the quarks are
additive

u d c s t b

Q Electric charge [e] 2
3 − 1

3
2
3 − 1

3
2
3 − 1

3

i3 Isospin projection 1
2 − 1

2 0 0 0 0

B Baryon number 1
3

1
3

1
3

1
3

1
3

1
3

S Strangeness 0 0 0 −1 0 0

C Charm 0 0 +1 0 0 0

B ′ Bottomness 0 0 0 0 0 −1

T Topness 0 0 0 0 +1 0

Antiquarks have the opposite signs. The isospin of the u and
d quarks is 1

2 , while the other quarks have isospin 0

flavours,

(u, d), (c, s), (t, b), (1.1)

and the three families of corresponding antiquarks. The baryon numberB is defined
as B = 1

3 for quarks and B = − 1
3 for antiquarks. Table 1.1 lists the additive

quantum numbers (the isospin is introduced in Sect. 3.1). By convention the flavour
S,C, B ′, T of a quark has the same sign as its chargeQ. Hence the flavour carried by
a charged meson has the same sign as its charge, e.g. the strangeness of theK+(us)
is +1, the charm and bottomness of the B−

c (bc) are both −1.
The strong interaction is described by a quantum field theory, Quantum Chro-

modynamics (QCD), based on colour symmetry, SU(3)c. Its constituents are the
quarks, together with the eight gluons as gauge bosons. Colour is confined, hence
free quarks and free gluons are not observed. The hadrons are states bound by the
gluon fields. Since gluons are electrically neutral and do not carry any intrinsic
quantum numbers (apart from colour), the quantum numbers of hadrons are given
by the quantum numbers of their constituent quarks and antiquarks.

The quark constituent masses are

m(u) ∼ 350 MeV,m(d) ∼ 350 MeV,m(s) ∼ 500 MeV,

m(c) ∼ 1500 MeV,m(b) ∼ 4700 MeV and m(t) ∼ 173 GeV,

the t quark being as heavy as a tungsten nucleus. The Higgs boson endows the
quarks with the “bare” masses:

m(u) ∼ 2 MeV,m(d) ∼ 5 MeV,m(s) ∼ 100 MeV,

m(c) ∼ 1300 MeV,m(b) ∼ 4500 MeV and m(t) ∼ 173 GeV.

Most of the mass of the nucleon is not due to the Higgs boson but to gluons. In
fact, without Higgs boson we and the matter in our environment would be less
than 1% lighter! In the framework of chiral symmetry (an ingredient of QCD) the
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quark masses vanish and there are eight massless Goldstone bosons. Those bosons
are identified as the lightest pseudoscalar mesons (the pion and its octet partners,
Fig. 7.3 in Chap. 7) which, however, are not massless. The chiral symmetry is broken
by the finite quark masses.

In the quark model the quarks carry the electric charge and the spin of the hadron,
and are therefore called “valence” quarks. In addition, gluons produce virtual qq
pairs, the “sea” quarks which, together with gluons, contribute to the hadron mass
albeit to a lesser extent. Recent calculations and new measurements in pp collisions
at high energies suggest that a large fraction of the proton spin may in fact be due
to the angular momentum of the quarks and antiquarks, and/or to the gluons whose
contribution rises very rapidly at low momentum fraction. Nonetheless, we shall see
that numerous predictions can be made from the quark model, which is sometimes
called “naive” since it emphasizes the role of the valence quarks in the hadronic
wavefunction.

We now know about 180 baryons and 190 mesons (some of which are not entirely
established experimentally), not counting the electric charge multiplicities. They are
listed in Figs. 1.1 and 1.2, respectively. As the tables show, many mesons are actually
heavier than baryons.

Since the beginning of the century a new spectroscopy has emerged beyond that
of the traditional qqq and qq hadrons: evidence is mounting for the existence of
baryons made of five quarks (pentaquarks, Pc = qqqqq) or six quarks (hexaquarks
or dibaryon) and of mesons made of two quarks and two antiquarks (tetraquarks,
qqqq) or deprived of quarks (glueballs, composed only of gluons). The existence
of such “exotics” is predicted by QCD, while structures such as qq or qqq are not
allowed (see Chaps. 10 on colour and 16 on exotics).

The baryon number being additive, baryons (antibaryons) have B = 1 (−1) and
mesons B = 0. The quantum numbers listed in Table 1.1 are not independent, but
related through the generalized Gell-Mann-Nishijima formula, which reads

Q = i3 + B+S+B ′+C+T
2 . (1.2)

This relation holds for quarks and also for hadrons, for example

u : Q = 2

3
= 1

2
+

1
3

2
, �−(sss) : −1 = 0 + 1 − 3

2
, B0

s (sb) : 0 = 0 + −1 + 1

2
.

(1.3)

The hypercharge y, defined as

y ≡ B + S − 1
3 (C − B ′ + T ) , (1.4)
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Fig. 1.1 Table of known mesons [2]. Particles without a dot are not fully established yet. The
particle name (Chap. 4) is related to its quantum numbers IG(J PC) which will be defined in the
next chapters. The masses in brackets (in MeV) are usually omitted for the ground state mesons
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Fig. 1.2 Table of baryons (adapted from [2]). Masses are given in brackets in MeV for baryons
that decay through the strong interaction. The half-integer number is the baryon spin J , P its
parity (when known). Baryons with 1 and 2 stars are not well established. The baryon name is
related to the quark content and isospin (see Chap. 13 for the nomenclature). A hyperon is a baryon
containing at least one s quark, such as the � (uds)

is equal to 1
3 for the u and d quarks, − 2

3 for the s and y = 0 for the heavier quarks.
Thus for the u, d and s quarks the hypercharge is equal to B + S. The Gell-Mann-
Nishijima formula

Q = i3 + y

2
(1.5)

(in its original form) holds only for the three lightest quarks.
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Throughout these lectures we shall use natural units by setting h̄ = c = 1 (e.g. the
projection of the proton spin onto the quantization axis is m = ± 1

2 ). Hence

h̄c = 197.3 MeV · fm = 1, (1.6)

where 1 fm = 10−15 m, therefore

1 MeV ≡ 1

197.3
fm−1. (1.7)

One obtains similarly with c = 1

1 s = 2.9979 × 1023 fm (1.8)

and

1 MeV = 1.5194 × 1021 s−1 . (1.9)

Final results are easily expressed into m, s or MeV by using the aforementioned
conversions. Energies and masses will be given in MeV, but momenta in MeV/c to
avoid confusion with energy.

Let us complete this introduction with a summary of the conservation laws that
hold for the strong, electromagnetic and weak interactions between hadrons and
in hadron decays. Conservation laws, symmetries and gauge invariance are closely
related (see e.g. [3]).

• The electric charge Q, the baryon number B and the total angular momentum
j are conserved in all interactions. CPT is also believed to be a universal
symmetry.

• Colour is conserved in all quark and gluon interactions (leptons do not carry
colour).

• Flavour is conserved in strong and electromagnetic interactions between hadrons
and so are parity P and charge conjugation C. These symmetries, as well as
their CP combination and time reversal invariance T , are violated in weak
interactions.

• The isospin and G parity (Sects. 3.1 and 3.4) are conserved only in strong
interactions, while the electromagnetic interaction violates the isospin andG, but
conserves the projection i3 of the isospin. Neither isospin, i3 norG are conserved
in weak interactions.

• The lepton number (which is not relevant in these lectures) is conserved, except
in neutrino oscillations.
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Chapter 2
Mesons

The spin vector �J of a hadron is constructed by adding the spins of the constituent
quarks and their angular momenta ��. For qq mesons the total quark spin is �s =
�sq + �sq̄ and �J = �� + �s. The corresponding quantum numbers are s = 0 or 1 and �
= 0, 1, 2, etc. Mesons with � > 0 are orbital excitations of the ground state � = 0
(Fig. 2.1). The meson spin j is an integer number with

|�− s| ≤ j ≤ �+ s. (2.1)

Radial excitations (vibrations) are denoted by the quantum number n ≥ 1. The
quantum numbers of a qq meson are specified with the notation

n2s+1�j or iG(jPC), (2.2)

where P is the parity, C the charge conjugation (or C parity), i the isospin, and
G the G parity. The two notations are not quite equivalent since in the former the
isospin i is omitted and in the latter n is not specified. The hadron spin and isospin
are often written in capital letters, hence the notation IG(J PC) [1]. In this case I
and J are obviously quantum numbers and not moduli of the vector operators �I
and �J .

For example, the ground states that can be built with the three lightest flavours u,
d , s are the nine pseudoscalar mesons with quantum numbers 11S0 (or JPC = 0−+)

π−, π0, π+,K−,K0
,K0,K+, η, η′, (2.3)

and the nine vector mesons with quantum numbers 13S1 (or JPC = 1−−)

ρ−, ρ0, ρ+,K∗−,K∗0
,K∗0,K∗+, φ, ω. (2.4)
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Fig. 2.1 A qq meson is in a spin-singlet state (s = 0, antiparallel quark spins) or in a spin-triplet
state (s = 1, parallel quark spins). Excited states are obtained by switching angular momentum
� > 0 within the pair (orbital excitation) or by inducing vibrations n > 1 (radial excitations)

2.1 Internal Parity

In atomic processes the dominant electromagnetic transitions are of the E1 type, in
which the angular momentum changes by one unit between initial and final state
levels. Hence the parity of the photon must be negative since parity is conserved in
electromagnetic interactions.

The electric charge is conserved in any reaction between initial and final states.
Similarly, to ensure parity conservation in strong interactions, a quantum number
is assigned to every hadron, its internal (or intrinsic) parity. The parity of a quark
can be chosen arbitrarily, +1 or −1. Furthermore, the relative parity between quarks
of different flavours cannot be established experimentally, because quark flavours
do not change in strong nor in electromagnetic interactions. However, the relative
parity between a fermion and its antifermion is predicted by the Dirac equation to
be negative (an experimental proof will be described below). The convention is to
assign a positive parity to the quarks and a negative parity to the antiquarks.

The parity is a multiplicative quantum number. For example, for a system made
of two sub-systems with parities P1 and P2 and relative angular momentum �, the
parity is given by

P = (−1)�PaPb. (2.5)

Hence one gets for the ground state baryons, for which all angular momenta vanish:

P(p) = +1, P (n) = +1, P (�) = +1, (2.6)

while for antibaryons or antibaryons

P(p) = −1, P (n) = −1, P (�) = −1. (2.7)

According to (2.5) the internal parity of a qq meson is then given by

P(qq) = −(−1)�, (2.8)
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where � is the angular momentum carried by the qq pair. We will show how the
internal parity of the pion was determined experimentally to be negative. From (2.8)
then follows that the angular momentum � of the qq pair is even. The pion is spinless
and therefore the qq pair is in the singlet state (s = 0 and � = 0, 11S0 state).

The experiment of Wu and Shaknov [2] established experimentally that the rel-
ative parity between fermion and antifermion is negative. Consider the electromag-
netically bound pair of a positron and an electron. The hyperfine interaction splits
the ground state into a spin singlet (1S0, parapositronium) which decays rapidly
with a mean lifetime of 124 ps into 2γ , and a spin triplet (3S1, orthopositronium)
decaying into 3γ with a lifetime of 142 ns. We remind the reader an important rule
that will be used during these lectures, namely that a spin-1 system does not decay
into two massless spin-1 objects (e.g. photons or gluons), by virtue of the Landau-
Yang theorem [3] (a proof is given in Appendix A). Therefore orthopositronium
does not decay into 2γ . According to (2.8) for a fermion-antifermion pair with �
= 0, one expects parapositronium (as well as orthopositronium) to have negative
internal parity.

Figure 2.2 shows a sketch of the apparatus [2]. Positronium is produced in a
64Cu positron source. The two 511 keV back-to-back photons from parapositronium
annihilation are collimated, scattered by two aluminium blocks and detected by
the scintillation counters S1 and S2. The cross section for Compton scattering
depends on the azimuthal angle with respect to the photon polarization: the photons
are re-emitted preferably in the direction orthogonal to the incident polarization
(oscillating dipole �E-field). By measuring the coincidence rate S1S2 as a function
of angle φ between the two detectors one obtains a distribution of the relative
orientations of the electric fields of the two photons. The result [2]

S1S2(φ = π/2)

S1S2(φ = 0)
= 2.04 ± 0.08 (2.9)

shows that the polarizations are preferably orthogonal. In Chap. 18 we demonstrate
that a negative parity spin-0 system decays into two spin-1 particles with their
polarizations preferably orthogonal. One can show that, in contrast, the polarizations
of the two spin-1 particles would be preferably parallel for an initial spin-0 state of
positive parity (see Sect. 2.4 on the internal parity of the π0).

Fig. 2.2 Relative parity
between fermion and
antifermion determined in
parapositronium decay [2]
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2.2 The Pion

The existence of a massive particle mediating the short range nuclear strong force
was postulated in 1935 by Hideki Yukawa. The range R of the interaction is related
to the Compton wavelength of the hypothetical particle, the pion,

R = 1

mπ
∼ 1 fm ⇒ mπ � 200 MeV, (2.10)

where we have used the unit conversion (1.7).
In 1936 a new particle was discovered in the cosmic radiation at the Earth’s

surface by Neddermeyer and Anderson, which was initially thought to be Yukawa’s
particle [4]. However, a negatively charged pion interacting with nuclear matter
would be captured in the atomic orbits before being absorbed by the nucleus, leading
to its disintegration (while positive pions would decay). Indeed, the negatively
charged cosmics observed at ground level induced nuclear disintegration when
being stopped in iron. In carbon, however, they decayed before being captured,
at variance with the behaviour expected for the Yukawa particle [5]. On the other
hand, capture by light nuclei and followed by nuclear splitting was observed at
very high altitudes by submitting photographic emulsions (which consist mainly
of carbon, oxygen and nitrogen atoms) to cosmic rays (Fig. 2.3, left) [6]. These
findings led to the conclusion that the particle originally detected at ground level
and the one observed at high altitudes were different entities, the muon and the pion,
respectively, the latter qualifying to be Yukawa’s particle. The charged pion with a
mass m = 139.6 MeV, was discovered in 1947 by Lattes, Occhialini and Powell
[7, 8], also in cosmic rays (Fig. 2.3, right).

2.2.1 The Spin of the Charged Pion

The spin of the positively charged pion was established by comparing the reaction

A : pp → dπ+ (2.11)

to its time-reversed process

B : π+d → pp (2.12)

at the same center-of-mass energy E:

E = 2
√
m2
p + k2

p =
√
m2
d + k2

d +
√
m2
π + k2

π(= k2
d), (2.13)

with obvious notations for the particle masses and momenta in the center-of-mass
system. For a two-body reaction 1 + 2 → 3 + 4 the differential cross section in the
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Fig. 2.3 Left: particle A interacts with a light nucleus in a photographic emulsion [6]. Note the
increasing energy loss near the interaction vertex which shows that the particle entered from the left
before being stopped. The emerging tracks are due to protons and nuclear fragments. The multiple
scattering of the incident track excluded the projectile to be a proton. The mass was estimated
between 120 and 200 electron masses. Right: discovery of the pion with photographic emulsions
at the Pic du Midi. The short tracks on the right stem from stopping positive pions which decay
into muons (negative pions would be absorbed by the nuclei). The track lengths of the muons are
both � 600 μm, hence the muon is emitted in a two-body decay (π+ → μ+νμ). Note the ionizing
power of the stopping π+ orμ+, which is larger than that of the faster and lighter positron (adapted
from [8])

center-of-mass reference frame is given by

dσ

d�
= 1

K × 64π2E2

k3

k1
|M|2 , (2.14)

whereK is the initial spin multiplicity factor K = (2s1 + 1)(2s2 + 1) and M is the
transition amplitude (for a derivation see [9] p. 12–2). For reactionA the multiplicity
factor is K = (2sp + 1)2 = 4 and the differential cross section is given by

dσA

d�
= 1

4 × 64π2E2

kd

kp
|MA|2. (2.15)

For reactionB withK = (2sd+1)(2sπ+1) = 3(2sπ+1) and sd = 1, the differential
cross section is given by

dσB

d�
= 1

3(2sπ + 1)× 64π2E2

kp

kd
|MB|2. (2.16)

The transition amplitudes are related by time reversal invariance, namely

|MA|2 = |MB |2. (2.17)
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The spin of the pion is then determined by building the ratio of differential cross
sections

dσA/d�

dσB/d�
= kd

4kp
× 3kd(2sπ + 1)

kp
= 3

4
(2sπ + 1)

k2
d

k2
p

. (2.18)

An early measurement of reaction A was performed at the 184" Berkeley cyclotron
with a proton beam of Tp = 340 MeV [10]. The corresponding center-of-mass
energy is given by

E =
√

2mp(Tp +mp)+ 2m2
p = 2039 MeV. (2.19)

The pion and deuteron momenta in the center-of-mass can be calculated from (2.13),

kπ = kd =
√[E2 − (mπ +md)2][E2 − (mπ −md)2]

2E
= 81 MeV/c, (2.20)

while the proton momenta are

kp = 1

2

√
E2 − 4m2

p = 399 MeV/c. (2.21)

For reaction B the required laboratory kinetic energy of the pion is

Tπ = E2 −m2
d −m2

π

2md
−mπ = 26 MeV. (2.22)

Figure 2.4 shows the differential cross section for reaction B measured at the Nevis
cyclotron of Columbia University [11], together with the prediction from reaction
A. The relation (2.18) was used for sπ = 0 and alternatively for sπ = 1. These early
data clearly favour sπ = 0.

We now integrate (2.15) and (2.16) over the full solid angle to obtain the total
cross sections. For reaction B the integration over the scattering angle runs only
from 0 to π

2 since protons emitted in the center-of-mass into the forward hemisphere
cannot be distinguished from those emitted into the backward hemisphere. This
leads to a multiplicative factor of 1

2 . The ratio of total cross sections is then given by

σA

σB
= 3

2
(2sπ + 1)

k2
d

k2
p

. (2.23)

Figure 2.5 shows a compilation of the measured total cross sections as a function
of incident laboratory energy. The measured cross section σB is converted into σA
by using (2.23), assuming that sπ = 0. The excellent agreement follows from time
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Fig. 2.4 Differential cross
section in the center-of-mass
system for the reaction
π+d → pp for 28 MeV
pions as a function of proton
angle (red circles). The
predictions from the reaction
pp → π+d are shown for a
spin-0 pion (green crosses)
and for a spin-1 pion [11]

Fig. 2.5 Measured total
cross sections
σA(pp → π+d) vs. proton
kinetic energy Tp in the
laboratory (red dots) and
σB(π

+d → pp) vs. pion
kinetic energy Tπ (blue
squares). The cross section
σB has been scaled to σA by
assuming that the pion has
spin sπ = 0 [12]

reversal invariance in strong interactions, and shows without doubt that the spin of
the pion is equal to zero.

Incidentally, Fig. 2.5 shows that the cross section for pp → dπ+ reaches a
maximum for proton energies of about 600 MeV. Hence, in order to maximize pion
production, accelerators (such as the isochronous cyclotron of the Paul Scherrer
Institute or the former CERN synchrocyclotron) have been built to accelerate
protons to 600 MeV. According to (2.19) the corresponding center-of-mass energy
is E = 2160 MeV, which is roughly equal to the mass of the (1232) + neutron
(Fig. 2.6).
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Fig. 2.6 Contribution of the
(1232)++ resonance to the
reaction pp → π+d

2.3 Internal Parity of the Charged Pion

The parity of the negatively charged pion was determined by observing the
absorption of pions stopped in liquid deuterium, followed by the emission of two
neutrons:

π−d → nn. (2.24)

Let us recall the reasoning which gives us the opportunity to review the symmetry
properties between fermions and to become familiar with the use of Clebsch-Gordan
coefficients.

In deuterium the stopping pion ejects the shell electron and is captured in the
n = 16 level of pionic deuterium. The pion then cascades to the lower levels
by X-ray emission. However, the relatively small pionic deuterium interacts with
neighbouring 2H molecules, and the electric fields induce Stark mixing between
π−d atomic orbitals. Once the pion occupies one of the higher s levels, the overlap
with the nuclear wavefunction leads to the prompt absorption by the deuteron, thus
suppressing X-ray transitions to the lowest n levels. This is the dominant effect when
absorbing pions in liquid targets.

At low densities, that is in gaseous targets, Stark mixing becomes less important.
For instance, in gaseous hydrogen the antiprotonic hydrogen atom (protonium) is
formed at n = 30 and de-excites by emitting X-rays (Fig. 2.7). Transitions to
the 2p level (L X-rays) and to the 1s level (K X-rays) have been observed by
stopping pions in hydrogen gas at NTP [13]. Proton-antiproton annihilation and
meson spectroscopy from s states has been extensively studied in liquid hydrogen
by bubble chamber experiments and by the Crystal Barrel experiment (for a review
see [14]), while annihilation from p states was investigated by the ASTERIX
experiment using gaseous targets [15]. Both experiments were performed at CERN’s
Low Energy Antiproton Ring (LEAR).

We have already shown that the spin of the pion is Jπ = 0. The spin Jd = 1
of the deuteron has been determined from the ground state hyperfine splitting of
the deuterium atom [16]. The deuteron is a bound system of a proton and a neutron
with even angular momentum (dominantly S wave, with �2.5%D wave admixture).
Therefore the internal parity of the deuteron is P(d) = +1. Thus the initial state |i〉
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Fig. 2.7 In liquid hydrogen
(or deuterium) the
antiprotonic atom annihilates
mostly from s states (red
arrow), while in gas the
suppression of the X-ray
cascade is less pronounced,
so that the atom can also
annihilate from p states (blue
arrow)

has the total spin Ji = 1 and the internal parity is

Pi = (−1)�PπPd = Pπ , (2.25)

since in liquid the relative angular momentum between the pion and the deuteron is
� = 0 (annihilation from the s levels).

Let us also determine the parity of the final state |f 〉. The wavefunction of the
neutron pair is given by

ψ(n, n) = |sm〉φL(n, n), (2.26)

where |sm〉 is the spin wavefunction (spin s = 0 or 1, projectionm) and φL(n, n) is
the orbital wavefunction with the angular momentum L between the neutrons. The
wavefunction |sm〉 can be written as the linear superposition of the wavefunctions
of the two subsystems with spins s1 and s2:

|sm〉 =
∑
m1,m2

〈sm|s1s2m1m2〉|m1m2〉. (2.27)

The quantum numbers s and m vary between |s1 − s2| and s1 + s2 and between −s
and +s, respectively. The sum extends over all m1 and m2 such that

m = m1 +m2. (2.28)
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The Clebsch-Gordan coefficients with the generic names 〈jm|j1j2m1m2〉 are
tabulated in Fig. 2.8. With j1 ≡ s1 = 1

2 and j2 ≡ s2 = 1
2 one gets the three

spin-triplet wavefunctions

|1 + 1〉 =
〈
1 + 1

∣∣∣∣
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2
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. (2.29)

The triplet wavefunctions are symmetric under the permutation of the two neutrons.
The spin-singlet wavefunction (j ≡ s = 0)

|00〉 =
〈
00
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1

2

1

2

1

2
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, (2.30)

is antisymmetric under the permutation of the two neutrons. For the orbital wave-
function φL(n, n) in (2.26) the permutation is equivalent to a parity transformation,
that is a space inversion:

Pφ(n, n) = (−1)Lφ(n, n). (2.31)

Hence φ is symmetric for even L, and antisymmetric for odd L. With identical
fermions the total wavefunction (2.26) must be antisymmetric. Therefore, if L is
even (odd) then s = 0 (s = 1). The spin singlet state can be excluded by the
conservation of total angular momentum conservation, since in the final state Jf =
Ji = 1. Hence L is odd (L = 1). The parity of the final state is then Pf = −1.
Finally, parity conservation requires that Pi = Pf . One concludes with (2.25) that
the internal parity of the pion is negative and therefore we shall write for the pion
that

JPπ = 0− . (2.32)
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Fig. 2.8 Clebsch-Gordan coefficients for the couplings j1 × j2 (note the boxed relation between
coefficients). A square-root sign is understood over the coefficient, e.g. − 1

2 stands for − 1√
2

[1]

The reaction π−d → nn was observed by stopping pions in liquid deuterium and
recording the two neutrons in coincidence [17]. Figure 2.9 shows the measured rate
as a function of the angle between the neutron directions. As expected, the two
neutrons are preferably emitted back-to-back. The rate for this reaction is about
twice that for radiative capture π−d → nnγ .
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Fig. 2.9 Measured and
predicted angular
distributions between the
direction of the two neutrons
in π−d → nn. The angular
resolution is determined by
the size of the neutron
counters [17]

2.4 Spin and Parity of the Neutral Pion

Let us assume as the simplest hypothesis that the spin of the π0, the neutral partner
of the π±, is also Jπ = 0. The main decay π0 → 2γ already excludes spin 1 by
virtue of the Landau-Yang theorem [3] (Appendix A), and higher spins are unlikely
for the lightest mesons. The projection of the angular momenta carried by the two
photons from π0 decay on the z-axis is equal to zero if the latter is chosen parallel
to the flight direction of the photons. Hence the two (spin-1) photons are either both
right-circularly polarized (R, right-handed photons) or both left-circularly polarized
(L, left-handed photons) due to the conservation of the total angular momentum
Jπ = 0 (Fig. 2.10). The polarizations (electric fields) with directions given by the
unit vectors �e1 and �e2 rotate with the frequency ω = mπ

2 . In the first case (R) the
angle between �e1 and �e2 increases with time while decreasing in the second case.
The 2γ state is described by the quantum superposition of R and L ,and therefore
the angle between �e1 and �e2 remains constant (see Ref. [9] p. 11–18 for details).

The wavefunction of the 2γ system can be constructed directly from the
kinematic variables as follows: for positive parity the wavefunction of a spin-0 pion
is a scalar, that is the sign does not change under space inversion, and is symmetric
under permutations (�k1 ↔ �k2 and �e1 ↔ �e2):

ψ+ ∝ (�k1 · �k2)(�e1.�e2) ∝ cosφ, (2.33)

where �k1 = −�k2 denote the photon momenta and φ is the angle between �e1 and �e2.
For negative parity the wavefunction is pseudoscalar, that is the sign changes under
space inversion, and is symmetric under permutations:

ψ− ∝ (�k2 − �k1)(�e1 × �e2) ∝ |�e1 × �e2| ∝ sinφ. (2.34)
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Fig. 2.10 In the decay of the
spinless π0 the photons are
both right-handed (R) or both
left-handed (L)

Fig. 2.11 Left: in the decay π0 → (e+e−)(e+e−) the leptons are accelerated along the electric
fields �E of the virtual photons. One measures the angular distribution between the planes spanned
by the e+e− pairs. Right: the histogram shows the measured φ distribution and the solid red curve
the fit for JP

π0 = 0− (64 decays) with χ � 0.75. The dashed curve would correspond to JP
π0 = 0+

[18]

The angular distribution between �e1 and �e2 is then given by

|ψ+|2 ∝ cos2 φ = 1

2
(1 + cos 2φ) for positive parity, (2.35)

|ψ−|2 ∝ sin2 φ = 1

2
(1 − cos 2φ) for negative parity. (2.36)

Hence for positive parity the electric fields of the photons prefer to be parallel (φ =
0), while for negative parity they are preferably orthogonal (φ = 90◦).

This has been tested by using the decay π0 → (e+e−)(e+e−) into two Dalitz
pairs [18] which occurs with the small branching ratio (decay probability) of
3.3 × 10−5. The neutral pions were produced in a hydrogen bubble chamber by the
charge exchange reaction π−p → π0n. The Dalitz pairs can be thought as being
generated by the internal conversion of the two photons with an expected branching
ratio proportional to (

√
α
√
α)2 ≈ 5 × 10−5. In the π0 rest frame the Dalitz pairs

are emitted in opposite directions under small opening angles (a few degrees). The
leptons are accelerated by the electric fields of the photons and the pairs span two
planes lying preferably parallel to the polarization of the photon. One then measures
the angle φ between the e+e− planes, as shown in Fig. 2.11 (left).
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However, the photons are virtual and the angular dependence becomes propor-
tional to 1 ± χPπ0 cos 2φ, where χ depends on the angles and energy partition
between the pairs [19]. The data are shown in Fig. 2.11 (right). The fitted parameter
is χ = 0.75 ± 0.42 [18], to be compared with the expected theoretical value of
0.48. The preferred angle φ is 90◦ and thus the internal parity of the neutral pion is
negative, Pπ0 = −1.

2.5 The Kaon

The first sighting of a particle with a mass of about 500 MeV was reported in 1944
(i.e. before the discovery of the pion), when a charged cosmic ray was observed
to scatter off an electron in a nuclear emulsion [20]. Figure 2.12 shows one of
the first observations of a charged kaon stopping in an emulsion and decaying into
μ+νμ [21].

2.5.1 The Spin of the Charged Kaon

The K+ decays into μ+νμ with a branching ratio of 63.6%. In the rest frame of
the kaon the muon is 100% polarized, see e.g. [22]. This follows as a consequence
of the neutrino left-handedness and angular momentum conservation if the kaon is
spinless, and is analogous to the decay π+ → μ+νμ. We shall nonetheless examine
the energy distribution of the pions in the hadronic decay

K± → π±π+π− (2.37)

(branching ratio of 5.6%) and deduce that the spin of the kaon is indeed equal
to zero. This also gives us the opportunity to rehearse some of the fundamental
properties of Dalitz plots that will be used throughout these lectures.

Fig. 2.12 Decay K+ → μ+ν of a stopping kaon in a nuclear emulsion. A mass of 562 ± 70 MeV
was estimated from multiple scattering and the energy loss derived from the grain density (adapted
from [21])
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Consider the three-body decay of a particle a → 1 + 2 + 3. In the rest frame
of a the directions of the three particles are coplanar and hence two parameters
are required to describe the kinematics of the decay (3 × 2 momentum components,
minus 3 constraints for energy and momentum conservation, minus 1 arbitrary angle
for the orientation of the coordinate system). These two parameters are usually
chosen as the invariant masses m12 and m13 (see Appendix B and Problem 2.1)
or as the kinetic energies T1 and T2. The latter satisfy the relation

T1 + T2 + T3 = Ma −m1 −m2 −m3 ≡ Q, (2.38)

the Q-value of the decay, with obvious notations. From (2.38) is it natural to
introduce an equilateral triangle of unit height to represent the decay events as
dots at the distances T1/Q, T2/Q and T3/Q from the sides of the triangle,
hence (T1 + T2 + T3)/Q = 1. Such a Dalitz plot is shown in Fig. 2.13 for the
special case of equal final state masses m. In the absence of interactions between
daughter particles (e.g. without intermediate two-body resonances) the Dalitz plot
is uniformly populated (for a proof see e.g. [9] p. 12–7).

The coordinate system in Fig. 2.13 is chosen so that

x ≡ 1√
3Q
(T1 − T2) and y ≡ T3

Q
− 1

3 . (2.39)

At point A particle 3 is at rest while 1 and 2 are emitted in opposite directions, hence
yA = − 1

3 . The triangle is centered at the origin of the coordinate system. At point C,
T2 = 0, yC = 1

6 and

xC = 1√
3Q
T1 = 1√

3Q
T3 = 1√

3

(
yC + 1

3

)
= 1

2
√

3
, (2.40)

hence a triangle side length of 2√
3

.
On the other hand, particle 3 reaches its maximum possible energy at point

B, recoiling against 1 and 2. From momentum conservation follows in the highly
relativistic limit m → 0 that

T1 = T2 = T3

2
⇒ T1 + T2 + T3 = 2T3 = Q (2.41)

and hence yB = 1
6 . The Dalitz plot becomes a triangle (Fig. 2.13, HR), as for

instance in orthopositronium decay into 3γ (the Dalitz plot is predicted to be nearly
uniformly populated [23]). Another example of 3γ decay will be discussed in
Sect. 3.1 (Fig. 3.2).
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Fig. 2.13 Dalitz plot of the three-body decay for identical masses m1 = m2 = m3 = m (left).
The physically allowed area is shown in colour. The kinetic energies divided by Q are plotted in
the directions perpendicular to the triangle sides. The kinematic configurations at points A, B and
C are explained in the box. The highly relativistic (HR) and non-relativistic limits (NR) are shown
on the right

When the Q value is smaller than the daughter masses, the non-relativistic
approximation for the kinetic energies becomes a good approximation. At point B

T1 + T2 + T3 = k2
1

2m
+ k2

2

2m
+ T3 = Q, (2.42)

where the momenta are k1 = k2 = k3
2 , and therefore

k2
3

4m
+ T3 = 3

2
T3 = Q. (2.43)
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Fig. 2.14 Dalitz plot of the
decay K± → π±π+π−. The
dotted curve shows the
boundary of the physically
allowed area, which becomes
a circle in the non-relativistic
limit [24]

From (2.39) the point B is located at the ordinate yB = + 1
3 and hence the Dalitz plot

reduces to a circle (Fig. 2.13, NR). This is nearly the case for the kaon decay (2.37)
with Q = 75 MeV < mπ . Figure 2.14 shows the Dalitz plot for 219 decays from
three different experiments [24]. Let us assign T1 and T2 to the two like-charge
pions and plot negative values of x on the positive side. We denote by � the angular
momentum between the two like-charge pions and by L that between the π∓ and
the π±π± dipion. At point B � = 0 since the two like-charge pions have equal and
parallel momenta (see inset in Fig. 2.13). At point A the π∓ is at rest with respect
to the π±π± dipion and hence L = 0. No events should be observed in the vicinity
of A if L > 0, nor near B if � > 0, in contrast to data. Therefore � = L = 0, which
leads to the conclusion that the spin of the charged kaon is JK = 0, the pions being
spinless.

2.6 Internal Parity of the Kaon

The internal parity of the charged kaon can be determined by stopping negative
pions in helium and analyzing the following reactions

K− 4He → 4H� π0, 4H� → 4He π−. (2.44)
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One of the protons in the helium nucleus is replaced by a � hyperon to form a �
hypernucleus. From the 4H� decay branching ratio into 4He π− one infers that
the decay is isotropic [25], indicating that no angular momentum is carried away.
The helium spin being zero, the total angular momentum in the decay also vanishes,
therefore the hypernucleus is spinless. We have demonstrated that the spins of the
pion and the kaon are zero. Since all particles in the first reaction have spin zero,
the total angular momentum is equal to the orbital angular momentum L between
initial and final states, which is conserved. The parity of the initial state (K− 4He)
is equal to that of the final state (4H�π0):

P = (−1)LPK P4He︸︷︷︸
+1

= (−1)L P4H�︸ ︷︷ ︸
+1

Pπ0︸︷︷︸
−1

, (2.45)

since P� = +1. Therefore the internal parity of the kaon is negative, PK = −1,
independently of L. According to (2.8) the kaon is also a 11S0 qq state.

In 1947 Rochester and Butler discovered in the cosmic radiation the electrically
neutral partner of the charged kaon (Fig. 2.15). The K0 (to be precise the KS state)
also decays into π0π0 with a branching ratio about half that for π+π−. Figure 2.15
(right) shows the signal from a large sample of KS → π0π0 decays. Bose-Einstein
symmetry for identical spin 0 bosons requires the relative angular momentum of the
π0π0 pair to be even. Hence spin 1 is excluded and from the nearly equal masses

Fig. 2.15 Left: discovery of the K0 decaying into π+π− in a cloud chamber. The K0 was
produced by cosmic rays in the lead plate [26]; right: mass distribution of the 2γ pairs measured
by a liquid argon calorimeter in a 100 GeV KS beam [27]
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Table 2.1 The (K
0
,K−) and

(K+, K0) isospin doublets
K

0
K− K+ K0

i3
1
2 − 1

2
1
2 − 1

2

Quark content sd su us ds

Strangeness −1 1

Mass [MeV] 497.6 493.7 493.7 497.6

of the neutral and charged kaons it is natural to also assume spin 0 for the neutral
kaon, hence

JPK = 0− . (2.46)

The K0 is produced at accelerators, for example by the reaction π−p → �K0,
where the � hyperon (uds) contains an s quark. Flavour conservation is strong
interactions then implies that the K0 contains an s quark and its charge conjugated

partner, theK
0
, an s quark. Table 2.1 summarizes the two kaon isospin doublets and

their quark contents. The K− is sometimes called “antikaon” because it contains a

u antiquark and is the isospin partner of the K
0
.
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Chapter 3
Isospin

3.1 Charge Independence

Hadrons with similar masses and same spin and parity are grouped in multiplets of
the electric charge. For example, the two charged pions π+ and π− (139.6 MeV)
and the π0 (135.0 MeV) form a triplet with similar masses. As Table 2.1 shows, the
four kaons with masses mK± = 493.7 MeV and mK0 = m

K
0 = 497.6 MeV form two

doublets, (K+, K0) and (K
0
, K−).

The nucleon also exists in two varieties, the proton (938.3 MeV) and the neutron
(939.6 MeV) with almost equal masses. They form a doublet of the isospin, a
concept that was introduced in 1932 by Werner Heisenberg, inspired by an analogy
with spin: in the 3-dimensional vector space the projection m of the spin �s onto
the z-axis assumes 2s + 1 possible values between −s and +s, where s is the spin
quantum number. In the absence of external fields the corresponding 2s + 1 spin
wavefunctions (spinors) are degenerate in energy.

Similarly, one introduces a vector �I in the (abstract) isospin space with
corresponding isospin quantum number i. The projection i3 of �I onto the z-axis in
isospin space takes 2i+ 1 values between −i and +i. The associated 2i+ 1 isospin
wavefunctions (isospinors) describe the 2i + 1 hadrons with different charges but
degenerate masses.

In the absence of electric charge, isospin would be a perfect symmetry. However
the hadrons in the multiplets, such as the proton and the neutron, have slightly
different masses. We have seen that most of the nucleon mass (99%) stems from the
gluonic interaction between quarks. The slightly different masses between proton
and neutron is due to the difference in quark masses, the d quark being heavier than
the u, because the Higgs boson couples more strongly to the former.1

1The electromagnetic repulsion acts in the opposite direction because it reduces the binding energy
and hence increases the mass of the proton.
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With the help of the Gell-Mann-Nishijima relation (1.2), which relates Q to i3,
one assigns the i3 values to the corresponding hadrons. For example, for the pion

π(i = 1) : π+ : i3 = +1, π0 : i3 = 0, π− : i3 = −1, (3.1)

(see also Table 2.1 for the kaon), while for baryons e.g.

N(i = 1
2 ) : p : i3 = +1

2
, n : i3 = −1

2
,

(i = 3
2 ) : ++ : i3 = +3

2
, + : i3 = 1

2
, 0 : i3 = −1

2
, − : i3 = −3

2
,

�(i = 0) : i3 = 0. (3.2)

In isospin space the multiplet members are represented by 2i + 1-dimensional
isospinors, e.g.

π+ =
⎛
⎝

1
0
0

⎞
⎠ , π0 =

⎛
⎝

0
1
0

⎞
⎠ , p =

(
1
0

)
, n =

(
0
1

)
, − =

⎛
⎜⎜⎝

0
0
0
1

⎞
⎟⎟⎠ . (3.3)

Since the isospin �I of the hadron is equal to the vector sum of the constituent
isospins and i3 is additive (in analogy to spin), one assigns to the quarks the isospins
given in Table 1.1. The u and d quarks in the first generation form a doublet of
isospin, while the other quarks are singlets. For i3 the u and d quarks have the
opposite signs:

i3(u) = 1

2
, i3(d) = −1

2
⇒ i3(u) = −1

2
, i3(d) = +1

2
. (3.4)

With a quark and an antiquark from the first generation either an isoscalar (i = 0)
can be formed, such as the neutral ω, or an isovector (i = 1) such as the
(ρ+, ρ0, ρ−). With three quarks of the first generation one gets an isospin doublet
(i = 1

2 ) such as the nucleon, or a quadruplet (i = 3
2 ) such as the .

The strong interaction is invariant under rotations in isospin space, hence
insensitive to rotations of the isospinors (3.3) by an arbitrary angle α around
the direction �α in isospin space. There are two types of rotations which differ
by the sign of α, passive and active. The former is a rotation of the coordinate
system, the latter a rotation of the physical system (Chap. 18). The active rotation is
achieved by applying the matrix representation of the unitary operator U = e−i �α· �I .
Rotational symmetry in isospin space means that �I commutes with the interaction
Hamiltonian H :

[U,H ] = 0 ⇒ [�I ,H ] = 0 ⇒ [I1,H ] = [I2,H ] = [I3,H ] = 0. (3.5)
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Since the components Ik do not commute among themselves, only one of them
is conserved during the interaction, usually chosen as I3. Charge independence
(sometimes also called “charge symmetry”) states that the strong interaction does
not depend on i3 and hence does not distinguish between members of the same
isospin multiplet. In particular, all masses should be equal within multiplets. The
forces between two protons (i3 = +1, hence i = 1) and two neutrons (i3 = −1)
are equal (obviously before adding electromagnetic repulsion), Fpp = Fnn, but
they are not equal to the force between a proton and a neutron, since the latter is a
superposition of i = 0 and i = 1 states. However, Fnp(i = 1) = Fpp.

The isospin quantum number i is also conserved in strong interactions. For
example, pp and nn states (i3 = 0) are linear combinations of i = 0 and i = 1
states. However, there is no transition between i = 0 and i = 1 in the charge
exchange reaction pp → nn (Problems 3.1 and 3.2).

Let us now switch on the electric charge. The interaction Hamiltonian becomes
sensitive to any rotation that changes the value of i3—related to the chargeQ by the
Gell-Mann-Nishijima relation (1.2)—that is rotations around the x- or the y-axis
(αx or αy �= 0). On the other hand, H is not affected by rotations around the z-axis
which leave i3 constant, therefore

[I1,H ] �= 0, [I2,H ] �= 0, but [I3,H ] = 0, (3.6)

and i3 is still conserved by the interaction.2

However, i is not defined in electromagnetic interactions, as the following
example shows. Consider the two radiative decay channels of the ω meson

ω → π0γ and ω → ηγ. (3.7)

Let us assign to the γ the quantum number i3 = 0 which is then conserved in both
decays, since the ω, π0 and η mesons all have i3 = 0. However, conservation of
i = 0 (ω) would imply that the γ has i = 1 when associated with a π0 and i = 0
when emitted with an η. The contradiction shows that i is not, in contrast to i3, a
good quantum number in electromagnetic interactions.

These radiative decay modes have been studied by the Crystal Barrel experiment
at CERN’s Low Energy Antiproton ring LEAR. (Since other results from the Crystal
Barrel will be discussed during these lectures, a brief description of the apparatus
will be given in the next subsection.) The ω meson was observed in pp annihilation

2The inequalities (3.6) lift the mass degeneracy in the isospin multiplet. This is analogous to the
two-level splitting of a free electron when an external magnetic field is switched on: the spin
precesses around the z-axis with constant projection m.
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Fig. 3.1 Invariant 3γ mass in pp annihilation into 5γ [1]

Fig. 3.2 (a) Dalitz plot of ω → 3γ in pp → ωπ0 (62,853 decays); (b) in pp → ωη (54,865
decays). The plots have been symmetrized: there are six possible combinations and hence six
entries/event [1]

at rest into ωπ0 and ωη with ω → π0γ or ω → ηγ , leading to 5γ in the final state.3

Figure 3.1 shows the ω signal in the 3γ invariant mass distribution and Fig. 3.2 the
3γ Dalitz plots, which are triangular in this highly relativistic case (see Fig. 2.13).

3The analysis of these radiative decays, in particular ω(→ ηγ )π0, is complicated by ρ−ω mixing:
the electromagnetic isospin violating decay ω → 2π (Sect. 3.4), with a branching ratio f of 1.5%,
interferes with the 2π decay of the ρ0 (f = 100%) through the transition ω → 2π → ρ0. This
interference must be taken into account when the ρ0 production × decay rate is much larger than
the corresponding ω one (see [1] for details).
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Signals from the intermediate states π0γ and ηγ are clearly visible in both plots.
The branching ratios for ω → π0γ and ω → ηγ are (8.28 ± 0.28) × 10−2 and
(4.6 ± 0.4)× 10−4, respectively [2].

The events between the bands in Fig. 3.2 are mainly due to 6γ events with a
missing (undetected) γ . The single event in the center of Fig. 3.2a was used to set an
upper limit to the direct decay ω → 3γ . By assuming phase space distribution Ref.
[1] arrives at an upper limit of 1.9 × 10−4 for the non-resonant ω → 3γ decay. We
shall return to radiative meson decays in the context of SU(3) symmetry (Sect. 7.3).

3.2 The Crystal Barrel Experiment at LEAR

The Low Energy Antiproton Ring (LEAR) was operated at CERN between 1983
and 1996 (Fig. 3.3). The 3.5 GeV/c antiprotons from a target struck by the PS beam
were stored in the antiproton accumulator (and later in the antiproton collector)
before being accelerated by the PS and injected into the high energy SPS pp

collider. They could also be decelerated in the PS and stored in the LEAR ring,
where they were decelerated further down to 60 MeV/c (2 MeV kinetic energy) or
accelerated to 1940 MeV/c (1.22 GeV), and then slowly extracted and distributed to
the experiments in the South Hall. The intense and pure low energyp beam of small
momentum spread (p

p
≤ 10−3) was achieved thanks to the invention of stochastic

Fig. 3.3 The Low Energy Antiproton Ring (LEAR) in the South Hall (image credit CERN)
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cooling. The continuous antiproton flux was 106 p s−1 and the spill time about 1 h,
after which the ring had to be replenished. Compare this flux with the one available
at the time of the antiproton discovery in 1955: 1 antiproton every 15 min!

The Crystal Barrel detector took data between 1989 and until LEAR was decom-
missioned in 1996. The main goal of the experiment was to study pp annihilation at
rest with very high statistics, in particular annihilation into final states with neutral
mesons (π0, η, η′, ω, etc.) leading to multiphoton final states. These channels occur
with a probability of �50% and had not been investigated previously. As we have
seen in Sect. 2.3, annihilation at rest follows the capture of the antiproton in the
orbitals of the hydrogen atom. Annihilation at rest into neutral mesons strongly
reduces the number of contributing initial states, mainly due to the conservation
of C parity (next section) and is therefore simpler to analyze. For a review of the
physics results and a comprehensive list of original publications, see [3].

Figure 3.4 shows a sketch and a photograph of the Crystal Barrel [4]. The
antiprotons from LEAR fly along the axis of a 1.5 T solenoidal magnet and stop in a
liquid (or gaseous) hydrogen target. The final state charge multiplicity is determined
online by two cylindrical proportional wire chambers. The momenta of the charged
annihilation products (mainly pions and some kaons) are measured by a jet drift
chamber, which is also capable to distinguish low energy (<500 MeV/c) kaons from
pions by dE/dx ionization sampling.

Fig. 3.4 Left: sketch of the Crystal Barrel detector [4]. 1, 2—yoke, 3—coil, 4—CsI(Tl) barrel,
5—jet drift chamber, 6—proportional wire chambers, 7—hydrogen target. Right: photograph of
the CsI barrel before insertion into the magnet (image credit CERN)
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Fig. 3.5 Left: CsI(Tl) crystal wrapped in aluminium foil with titanium container and wavelength
shifter. Right: photograph of the jet drift chamber showing the readout connectors for the 30 sectors
and the signal cables from the multiwire proportional chambers (image credits CERN)

Photons are detected by a barrel-shaped assembly of 1380 CsI(Tl) crystals,
30 cm long (16 radiation lengths), read out by photodiodes (Fig. 3.5, left). The
crystals are oriented towards the annihilation point. They are wrapped in teflon and
aluminized mylar, and are enclosed in thin titanium containers. The scintillation
light is converted to higher wavelengths by a wavelength shifter. The re-emitted light
is detected by a photodiode glued on the edge of the wavelength shifter. Up to 10
γ ’s with energies as low as 4 MeV are routinely reconstructed with good efficiency,
thanks to the large solid angle coverage (97% ×4π). The angular resolution is
typically ±1◦, the mass resolution ±10 MeV for γ ’s from π0 → 2γ and ± 20 MeV
for γ ’s from η → 2γ decay.

The jet drift chamber (Fig. 3.5, right) is made of 30 sectors, each with 23 sense
wires, read out on both ends by flash ADCs to determine the coordinate along the
z-axis through charge division. The chamber is filled with a CO2/isobutane mixture.
The position resolution in the plane transverse to the beam axis is ±150 μm, the
one along the wires ±1 cm. The momentum resolution on pions is typically 2% at
200 MeV/c, rising to � 7% at 1 GeV/c.

3.3 Charge Conjugation

Charge conjugation transforms a particle into its corresponding antiparticle,
whereby i3, the electric charge Q, the baryon number B and the flavour quantum
numbers (S, C, B ′ and T ) reverse sign. For example, a π+ becomes a π−, a
neutron (n) an antineutron (n̄). The operation also flips the sign of the magnetic
moment. Space coordinates and kinematic quantities such as momentum or angular
momentum are not affected.
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Electrically neutral bosons with vanishing flavour quantum numbers are eigen-
states of the charge conjugation with C parity equal to ±1, since applying the
operation twice retrieves the original particle. According to (1.2) they also have
i3 = 0. Examples of such self-conjugated bosons are the π0, the ω, the J/ψ (cc)
and the γ . Note that gluons, which carry colour and anticolour, are not eigenstates of
charge conjugation: e.g. a red-antigreen gluon is transformed into an antired-green
gluon. To determine the sign (±1) of self-conjugated bosons, let us first consider the
photon. The sign of the electromagnetic 4-potential (Aμ → −Aμ) changes signs
when flipping the electric charge, and hence both the electric and magnetic fields
change signs. Therefore the C parity of the photon is negative

C|γ 〉 = −|γ 〉. (3.8)

The parity of the photon is also negative (Sect. 2.1) and therefore

JPC(γ ) = 1−−. (3.9)

The C parity is a multiplicative quantum number, hence a set of n photons is an
eigenstate of C parity with

C|nγ 〉 = (−1)n|nγ 〉. (3.10)

Since C parity is conserved in electromagnetic transitions, the C parity of the π0

meson, which decays into γ γ , is C(π0) = +1, hence

JPC(π0) = 0−+. (3.11)

Likewise for the η → γ γ , C(η) = +1. From the electromagnetic decay ω → π0γ

or ω → ηγ (Fig. 3.2) one concludes that C(ω) = −1, which is also true for ρ0 →
π0γ , C(ρ0) = −1.

Conservation of C parity in electromagnetic decays is well established. For
example, the C violating decay of the π0 into 3γ (C = −1) has not been observed.
The decay was sought at LAMPF (Los Alamos) by producing neutral pions through
the charge exchange reaction π−p → π0n with stopping pions, and by looking for
3γ events with a large solid angle box of NaI(Tl) crystals [5]. An upper limit of

f (π0 → 3γ )

f (π0 → 2γ )
< 3.1 × 10−8 (3.12)

was obtained. A test of C conservation can also be performed by looking for J/ψ
decay into φγ . Both J/ψ and φ are vector mesons with negative C parity. A
search was conducted with the BESIII detector at Beijing (described in Sect. 9.1) by
exciting the ψ(2s) in e+e− collisions, and by looking at its decay into J/ψ π+π−
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with J/ψ → φγ (φ → K+K−) [6]. No events were observed, setting an upper
limit of 1.4 × 10−6 for the decay4 J/ψ → φγ .

Boson-antiboson (BB̄) and fermion-antifermion (FF̄ ) pairs are also eigenstates
of C. Consider a BB̄ or FF̄ pair with relative angular momentum � and total spin
s and denote the corresponding wavefunctions by φ� and χs . From the properties of
Clebsch-Gordan coefficients (boxed relation in Fig. 2.8), one derives the symmetry
property

〈sBsB̄ |sms〉 = (−1)s−2sB 〈sB̄ sB |sms〉 = (−1)s〈sB̄ sB |sms〉 (3.13)

for bosons (with sB = sB̄ integer) and

〈sF sF̄ |sms〉 = (−1)s−2sF 〈sF̄ sF |sms〉 = (−1)s−1〈sF̄ sF |sms〉 (3.14)

for fermions (with sF = sF̄ half-integer). Charge conjugation permutes the two
bosons and Bose-Einstein symmetry requires that |BB〉 = |BB〉, therefore for
bosons

C|BB〉 = ± |BB〉︸ ︷︷ ︸
=|BB〉

= ±φ�(B,B)χs(B,B) = ±(−1)�φ�(B,B)(−1)sχs(B,B)

= ±(−1)�+s|BB〉, (3.15)

hence �+ s must be even. A pair of self-conjugated bosons, such as π0π0 or γ γ , is
an eigenstate of C with eigenvalue +1. Then the plus sign must be chosen in (3.15).

Similarly for fermion-antifermion pairs, recalling that fermion and antifermion
have opposite internal parities and taking (3.14) into account,

C|FF 〉 = ±|FF 〉 = ±φ�(F , F )χs(F , F ) = ±(−1)�+1φ�(F, F )(−1)s−1χs(F, F )

= ±(−1)�+s|FF 〉. (3.16)

The ground state of parapositronium 1S0(e
+e−) decays into two photons, hence

C = +1. Since � = 0 and s = 0, again the plus sign in (3.16) must be chosen.
This is also true for orthopositronium 3S1(e

+e−) which decays into three photons
(C = −1 therefore � = 0 and s = 1). Thus particle-antiparticle pairs �� (FF or
BB) are eigenstates of charge conjugation with eigenvalue

C(��) = (−1)�+s . (3.17)

4The C violating decay J/ψ → γγ is forbidden by the Landau-Yang theorem. The experimental
upper limit is 2.7 × 10−7 [6].



38 3 Isospin

Let us apply this handy formula to several examples:

1. The neutral pion is spinless with positive C parity, hence the relative angular
momentum � between the quark and the antiquark is even. One expects � = 0 for
the lightest known meson: the neutral pion (JPC = 0−+) is a 1S0(qq) state.

2. The ω meson (1−−) is a 3S1(qq) state since s = 1 and C = −1. This is also true
for the ρ0 meson. Both have i3 = 0 but the former is an isoscalar while the latter
is an isovector.

3. The ρ0 decays with a branching ratio of �100% into π+π−. The conservation of
C parity in strong interactions requires the angular momentum � between the two
pions to be odd sinceC(π+π−) = (−1)� = −1. In fact �must be equal to 1 from
total angular momentum conservation since Jρ = 1. Note that ρ0 cannot decay
into π0π0, since � would have to be even by virtue of Bose-Einstein symmetry.
This decay not only violates C, but is also forbidden by all interactions.

3.4 G Parity

We have seen that neutral bosons with vanishing flavour quantum numbers are
eigenstates of C and have isospin i3 = 0. They can be isoscalars (such as the η
or the ω) or isovectors (such as the π0 or the ρ0). Let us now include charged
mesons with vanishing flavour quantum numbers, i.e. isovectors such as the π± or
the ρ± which are composed of ud or du quarks, or their orbital or radial excitations.
A (passive) rotation of 180◦ of the coordinate system about the y-axis in isospin
space is represented by the operator eiπI2 , which flips the third component i3 of the
isospin and hence the charge of the meson. The G parity is the combined operation
of charge conjugation and rotation. The operator

G = CeiπI2 (3.18)

retrieves the original state, which is then an eigenstate of G. The rotation of the
physical system transforms for instance a π+ into a π−, while C conjugation
recovers the π+ (Fig. 3.6). The charged pion is therefore an eigenstate of the G

Fig. 3.6 A rotation of the
coordinate system by 180◦
about the y-axis transforms
the π+ into a π−



3.4 G Parity 39

parity. For mesons the isospin i is an integer number and hence the isospinor behaves
under rotations like the spherical function Ym� under rotations around the y-axis in
coordinate space. For i3 = 0 the isospinor transforms as Y 0

i :

eiπI2Y 0
i (θ) = Y 0

i (π − θ) = (−1)iY 0
i (θ). (3.19)

The rotation operator eiπI2 therefore contributes the multiplicative factor (−1)i . The
G parity of the neutral pion is negative:

G|π0〉 = (−1)C|π0〉 = −|π0〉. (3.20)

Invoking charge independence gives also a negativeG parity for the charged pion:

G|π±〉 = −|π±〉. (3.21)

The G parity of particle-antiparticle pair is with (3.17),

G(��) = (−1)�+s+i(��) . (3.22)

From charge independence and C conservation follows that G parity is conserved
in strong interactions.G parity is not an additional symmetry of strong interactions,
but a practical concept, as the following applications show.

1. TheG parities of the ρ0 and ω mesons are

G|ρ〉 = (−1)1C|ρ〉 = +|ρ〉,
G|ω〉 = (−1)0C|ω〉 = −|ω〉. (3.23)

A system made of n pions is an eigenstate ofG with eigenvalueG(nπ) = (−1)n.
Due to G parity conservation, the ρ decays into 2π and the ω into 3π . However,
the ω does not decay into 3π0 since this violates C and isospin conservation.
As we have seen, the ρ0 does not decay into π0π0 due to J,C and isospin
conservation.

2. A pion pair has positiveG parity. From (3.22)

G|π+π−〉 = (−1)�+i |π+π−〉 = +|π+π−〉. (3.24)

The isospin of the pair depends on the angular momentum � between the pions.
For � even, i = 0 (or 2), while for � odd, i = 1.

3. The η meson has positiveG parity:

G|η〉 = (−1)0C|η〉 = +|η〉. (3.25)
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Fig. 3.7 (a) Pion production by OPE in πp inelastic scattering. The total number of pions
emerging from the vertex must be even; (b) elastic πN scattering through ρ exchange

The η cannot decay into two pions since its negative parity would require �
to be odd, in conflict with Jη = 0. The η decays into π+π−π0 and 3π0 by
violatingG conservation (branching ratio of 55.6%). The electromagnetic decay
into 2γ occurs with a comparable branching ratio of 39.4%. Thus, η → 3π is an
electromagnetic process which does not conserve isospin nor G.

4. G parity is conserved at a strong interaction vertex. For instance, in πN scat-
tering with one pion exchange (OPE) the number of emitted pions must be even
(Fig. 3.7a). On the other hand, OPE does not contribute to πN elastic scattering
but proceeds e.g. through ρ exchange with positiveG parity (Fig. 3.7b).

Note that the G parity is not defined for the K , D and B mesons which carry
open flavours. For example, the K+ becomes a K0 under rotation (Table 2.1) and

then a K
0

under C conjugation. We shall return to the G transformation for kaons
in Sect. 6.2.
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Chapter 4
Nomenclature

Before 1986 hadron names were often inspired by fantasy or the name of the
discoverer.1 However, the increasing number of observed hadrons required the
introduction of a systematic naming scheme. The idea was to assign names from
which the quantum numbers JPC of the hadrons could be inferred, while at the
same time refraining to change the names of the well-known ones, such as the pion
(π), the kaon (K) or the ρ. The new scheme was introduced in 1986 by the Particle
Data Group [1]. Let us deal here with mesons and defer baryons to Chap. 13. We
have seen that hadrons appear in isospin multiplets, and in the following sections
we shall extend the multiplets to higher symmetries. The multiplets are labelled
according to the quantum numbers JPC of the neutral mesons with hidden flavour,
for which the C parity is defined. Let us summarize the quantum numbers of qq
mesons derived in the previous sections:

Spin : |�− s| < j < �+ s , (4.1)

Parity : P = −(−1)� , (4.2)

C parity : C = (−1)�+s , (4.3)

with s = 0 or 1 (the C parity being defined only for neutral quark-antiquark pairs
with hidden flavours S = C = B ′ = 0), and

G parity : G = (−1)i+�+s , (4.4)

1such as A for “Andrei”, B for “Buddha” (a fat resonance), F for “Felicitas”, E for “Elisabeth” or
perhaps “Europe”!
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Table 4.1 Nomenclature for
mesons with hidden flavours

i J PC J−+ J+− J−− J++

1 dd − uu, ud, du π b ρ a

0a dd + uu, ss η, η′ h, h′ ω, φ f, f ′

0 cc ηc hc ψb χc

0 bb ηb hb ϒ χb

1 ccqq ′ �c Zc Rc Wc

1 bbqq ′ �b Zb Rb Wb

G = −1 for PC = +− and −−, and G = +1 for
−+ and ++ mesons with i = 0. The opposite holds
for i = 1: G = +1 for +− and −− and G = −1 for
−+ and ++
aThe superposition of uu, dd and ss pairs in isoscalar
mesons is discussed in Sect. 5.1
bThe J = 1 ground state is called J/ψ

with i = 0 or 1, defined only for quark-antiquark pairs with hidden flavours. Note
that hadrons containing the t quark do not bind due to the very short lifetime of this
quark which decays intoW+b with a mean life of about 10−25 s.

Table 4.1 shows the nomenclature for mesons with hidden flavours for all
possible JPC and i. A subscript J is added for the spin except for pseudoscalar
(0−+) and vector (1−−) mesons. The mass is given in parentheses in MeV, except
for the well-known ground state pseudoscalars and vectors, the π , η, η′ and ρ, ω, φ,
respectively. For the cc and bb states the mass is sometimes replaced by the label
n�, see (2.2) (e.g. 1S, 2S, 1P , etc.). For example, the ρ+

3 (1690) is an established
� = 2 orbital excitation ud meson with quantum numbers 3−− and i = 1.

Pseudoscalar mesons have the quantum numbers 0−+, scalar mesons 0++, vector
mesons 1−−, axial-vector mesons 1+− and tensor mesons 2++. Note that the
combinations 0−−, 0+−, 1−+, 2+−, 3−+. . . are forbidden for qq states (Problem
4.1). Candidates for such “exotic” non-qq mesons have been observed (Sect. 11.3).
An example is the π1(1600) with quantum numbers 1−+(i = 1). Table 4.1 also
includes the nomenclature introduced in 2017 for mesons which contains cc or bb
pairs but are electrically charged and hence must have at least an additional qq′
charged pair (tetraquarks). Candidates have been observed recently (Sect. 16.2).

States with yet unknown quantum numbers are labelled X. In the heavy quark
sector several states have properties not easily compatible with the naive quark
model (see Sect. 16.2). These states have been labelled X, Y or Z. The Particle
Data Group now calls the states with known quantum numbers according to the list
in Table 4.1, but often also appends the original nameX, Y or Z.

Mesons with S, C, B ′ �= 0 are labelled as follows:

1. The name refers to the heavier quark: K for s (e.g. K−[su] or K
0[sd]), D for c

(e.g. D0[cu]) and B for b (e.g. B−[bu] or B
0[bd]).

2. The lighter quark, if not u nor d , is indicated by a subscript, for instanceD+
s [cs],

B−
c [bc].

3. A superscript ∗ is added for natural parity states, that is those with P = (−1)J .
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Table 4.2 Old names for some of the mesons before 1986

Old name New name Old name New name Old name New name

S(975) f0(980) δ(980) a0(980) H(1190) h1(1170)

B(1235) b1(1235) A1(1270) a1(1260) f (1270) f2(1270)

D(1285) f1(1285) A2(1320) a2(1320) ε(1300) f0(1370)

E(1420) f1(1420)a ι(1440) η(1405) f ′(1525) f ′
2(1525)

ω(1670) ω3(1670) F± D±
s F ∗(2140) D∗±

s

Q1(1280) K1(1270) Q2(1400) K1(1400) K∗(1430) K∗
2 (1430)

aor η(1405)

4. The spin J appears as a subscript except for pseudoscalar and vector mesons.

For example, the B∗+
c would be the 1− [cb] meson, which has not been observed

yet (2017), in contrast to its 0− partner, the B+
c . For further examples, see Problem

4.2.
Table 4.2 recalls some of the old names quoted in the literature before 1986.
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Chapter 5
Quark-Antiquark Nonets

Let us first deal with mesons made of the three lightest quarks u, d , s and u, d , s. As
illustrated in Fig. 2.1, with three flavours and three antiflavours one can construct a
nonet of mesons for each orbital mode, each vibrational mode and for each parallel
and antiparallel spin.

Figure 5.1 shows the spectrum of the lower meson excitations which resembles
the one of the hydrogen atom. Note that for the hydrogen atom the lowest vibrational
states are labelled 1s, 2p, 3d . . . , while in the quark model one uses the notation 1S,
1P , 1D. . . We have already introduced the ground states (� = 0, n = 1), the s = 0
pseudoscalars (2.3) and the s = 1 vectors (2.4) which are discussed in more detail
below. Their vibrational excitations also build two nonets of pseudoscalar and vector
mesons for each value of n ≥ 2. The orbital excitations � ≥ 1 consist of four nonets
for each value of n, since j = � for antiparallel quark spins and j = �−1, � or �+1
for parallel spins. Each row contains three isovectors, two strange isodoublets, and
two isoscalar singlets. Mesons in the dark (blue) areas are well established, those in
the white areas are not fully established, or their classification is only tentative. As
the meson masses increase, the states become broad and overlap, which complicates
the spin-parity determinations.

The C parity is that of the neutral members. States with the same quantum
numbers mix. For instance, the 23S1 and 13D1 mesons have the same JPC and
are expected to mix. The statesK1a andK1b in the axial vector 1++ and 1+− nonets
are mathematical constructs. The observed mesons are the K1(1270 and K1(1400)
which are orthogonal linear combinations of K1a and K1b. The former decays into
Kρ and the latter intoK∗π , leading to the same final stateKππ . A coupled channel
analysis taking into account the interference between the two decays in Kππ leads
to a mixing angle close to 45◦ betweenK1a andK1b (see [1] and references therein).

The classification in the scalar nonet and its radial excitations is controversial.
The f0(1500) could qualify as one of the i = 0 state in the nonet shown in Fig. 5.1
but has also been interpreted as a glueball (Sect. 11.1). The scalar mesons a0(980),
K∗

0 (700) (also known as κ), the f0(500) (also known as σ ), and the f0(980) are not

© The Author(s) 2018
C. Amsler, The Quark Structure of Hadrons, Lecture Notes in Physics 949,
https://doi.org/10.1007/978-3-319-98527-5_5

45

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98527-5_5&domain=pdf
https://doi.org/10.1007/978-3-319-98527-5_5


46 5 Quark-Antiquark Nonets

Fig. 5.1 The mesons made of the u, d, and s light quarks are organised in n2s+1�j nonets (or
JPC). The well established mesons are shown in the dark (blue) areas. Strong evidence has been
reported for those in the white areas, but their classification is tentative. The vertical mass scale is
approximate. Many orbital and radial excitations have not been identified yet (see the text and also
Fig. 1.1 for further candidates)

shown in the figure. They could build the lightest nonet, but they have been proposed
to be two-meson resonances or tetraquarks (Table 11.1 and Sect. 16.1).

The pseudoscalar slot labelled η(1440) may in fact consist of two states, one
at 1405 MeV, the other at 1475 MeV, while the η(1295) is not firmly established
(for a review see [2]). On the other hand, the qq nature of the established f1(1420)
has been questioned. It could be replaced in the figure by the less well established
f1(1510) [2].
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5.1 Nonet Mixing Angle

Let us define the notation that will be used throughout these lectures. With three
quarks and three antiquarks the qq combinations are

|ud〉, |du〉, |uu〉, |dd〉, |us〉, |su〉, |ds〉, |sd〉, |ss〉 (5.1)

which then need to be symmetrized (e.g. |ud〉 ± |du〉, see Sect. 6.2). The qq pairs
are orthogonal and normalized:

〈uu|dd〉 = 〈ud|du〉 = 〈us|ss〉 . . . = 0,

〈ud|du〉 = 〈us|su〉 . . . = 0,

〈uu|uu〉 = 〈dd|dd〉 = 〈ss|ss〉 = 〈ud|ud〉 . . . = 1. (5.2)

We will write a superposition as one single ket or bra, e.g. |dd〉− |uu〉 ≡ |dd −uu〉
or |ud〉 ± |du〉 ≡ |ud ± du〉. Table 5.1 lists the quark assignments of the ground
state mesons.

The wavefunctions are normalized and orthogonal. Missing in the table are the
two isoscalar states which are expected to mix since they have identical quantum
numbers (Q = i = S = 0). As we shall see in Chap. 7 their wavefunctions are linear
superpositions of the octet and singlet wavefunctions

|8〉 ≡ 1√
6
|uu+ dd − 2ss〉, SU(3) octet,

|1〉 ≡ 1√
3
|uu+ dd + ss〉, SU(3) singlet. (5.3)

These functions are normalized and orthogonal to the ones listed in Table 5.1. The
linear superposition involves an angle that can be measured, the mixing angle θ .

Table 5.1 Quark
composition of the qq ground
state mesons (S stands for
strangeness)

0−+ 1−− S

π+ |ud〉 ρ+ |ud〉 0

π0 1√
2
|dd − uu〉 ρ0 1√

2
|dd − uu〉 0

π− −|du〉 ρ− −|du〉 0

K+ |us〉 K∗+ |us〉 +1

K0 |ds〉 K∗0 |ds〉 +1

K
0 −|sd〉 K

∗0 −|sd〉 −1

K− −|su〉 K∗− −|su〉 −1

The π0 and ρ0 are linear combinations of uu and dd
pairs and do not contain any ss . The minus signs are
discussed in Sect. 6.2
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The physically observed states are

ψ ′ = |8〉 cos θ − |1〉 sin θ,

ψ = |8〉 sin θ + |1〉 cos θ. (5.4)

For those nonets with mixing angle θ satisfying the condition of ideal mixing

tan θ = 1√
2

⇒ cos θ =
√

2

3
, sin θ =

√
1

3
, (5.5)

or θ = 35.3◦, the ss component decouples from uu and dd:

ψ ′ = 1

3
|uu+ dd − 2ss〉 − 1

3
|uu+ dd + ss〉 = −|ss〉,

ψ = 1

3
√

2
|uu+ dd − 2ss〉 +

√
2

3
|uu+ dd + ss〉 = 1√

2
|dd + uu〉. (5.6)

Ideal mixing is also fulfilled when

tan θ = −√
2 ⇒ cos θ =

√
1

3
, sin θ = −

√
2

3
, (5.7)

or θ = −54.7◦. In this case the quark contents of ψ and ψ ′ are swapped:

ψ ′ = 1

3
√

2
|uu+ dd − 2ss〉 +

√
2

3
|uu+ dd + ss〉 = 1√

2
|dd + uu〉,

ψ = −1

3
|uu+ dd − 2ss〉 + 1

3
|uu+ dd + ss〉 = |ss〉. (5.8)

There is an ambiguity in the mixing (5.4): θ = 35.3◦ or −54.7◦, depending on which
observed state is ascribed to the ψ and which to the ψ ′. Note that 180◦ can always
be added or subtracted (which flips the signs of the wavefunctions (5.4)), but we
adopt the convention that θ lies between −90◦ and +90◦. For vector mesons the
mixing is usually written as

φ = |8〉 cos θV − |1〉 sin θV ,

ω = |8〉 sin θV + |1〉 cos θV . (5.9)

We will show in the next section that θV is close to ideal. Hence the φ becomes
almost pure ss and the ω almost pure uu+ dd:

φ � −|ss〉, ω � 1√
2
|dd + uu〉. (5.10)
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Nearly ideal mixing also occurs for the 2++ and 3−− nonets for which enough
information is available to calculate θ (see Table 5.2). However, there is an exception
with the pseudoscalars (an intuitive explanation will be given in the next section).
The convention is to express the mixing as

η = |8〉 cos θP − |1〉 sin θP ,

η′ = |8〉 sin θP + |1〉 cos θP . (5.11)

As we shall see, θP lies in the range −10◦ to −20◦, far from ideal mixing. Assuming
that θ � 0 leads to the crude approximation

η ∼ 1√
6
|uu+ dd − 2ss〉,

η′ ∼ 1√
3
|uu+ dd + ss〉. (5.12)

Hence η and η′ are almost pure octet and pure singlet, respectively.

5.2 Mass Formulae

The meson masses can be used to estimate the nonet mixing angle. Let us consider
a 2-dimensional space spanned by the basis made of the two isoscalars (5.3), and
build the mass matrix

M =
(
m8 m81

m18 m1

)
(5.13)

with

m8 = 〈8|H |8〉, m1 = 〈1|H |1〉, m81 = m18 = 〈8|H |1〉. (5.14)

The two physical states ψ1 and ψ2 and their corresponding mass eigenvalues λ1 and
λ2 are obtained by diagonalizingM , that is by solving the equationMψ = λψ . The
two solutions of the secular equation

∣∣∣∣
m8 − λ m81

m18 m1 − λ
∣∣∣∣ = 0 ⇒ (m8 − λ)(m1 − λ)−m2

18 = 0 (5.15)

are

λ1,2 =
m1 +m8 ±

√
(m1 +m8)2 + 4(m2

81 −m1m8)

2
. (5.16)
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Adding and multiplying the eigenvalues leads to the relations

λ1 + λ2 = m1 +m8 and λ1λ2 = m1m8 −m2
81, (5.17)

which will be used below. The components of the eigenfunction ψ1 in the (|8〉, |1〉)
basis are

ψ1 = |8〉 cos θ − |1〉 sin θ =
(

cos θ
− sin θ

)
. (5.18)

The corresponding eigenvalue fulfils the equation

(
m8 m81

m18 m1

)(
cos θ

− sin θ

)
= λ1

(
cos θ

− sin θ

)
. (5.19)

From the first row on obtains by solving for θ

tan θ = m8 − λ1

m81
. (5.20)

The terms m8 and m18 can be calculated from the constituent quark masses. By
writing the octet and singlet (5.3) in components 1√

6
(1, 1,−2) and 1√

3
(1, 1, 1) one

obtains

m8 = 1

6
(1, 1,−2)

⎛
⎝

2mu 0 0
0 2md 0
0 0 2ms

⎞
⎠
⎛
⎝

1
1

−2

⎞
⎠ = 1

3
(mu +md + 4ms), (5.21)

and

m81 = m18 = 1√
18
(1, 1,−2)

⎛
⎝

2mu 0 0
0 2md 0
0 0 2ms

⎞
⎠
⎛
⎝

1
1
1

⎞
⎠ =

√
2

3
(mu +md − 2ms).

(5.22)

We now replace the constituent quark masses by the meson masses. From Table 5.1
one finds, e.g. for the vector nonet and with the assumption that mu = md ,

m8 = 1

3
(2mu + 4[ms +mu] − 4mu) = 1

3
(4mK∗ −mρ), (5.23)

m81 =
√

2

3
(2mu − 2[ms +mu] + 2mu) = 2

√
2

3
(mρ −mK∗). (5.24)
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Then with λ1 ≡ mφ and after substituting into (5.20) the mass formula reads

tan θ = 4mK∗−mρ−3mφ
2
√

2(mρ−mK∗ ) . (5.25)

One obtains θ � 36.5◦ when introducing the meson masses, close to the value
of 35.3◦ expected from ideal mixing. Formula (5.25), the so-called linear mass
formula, is sometimes replaced by its quadratic version, in which the masses are
replaced by their squares, although there are no compelling theoretical reasons to
do so1:

tan θ = 4m2
K∗ −m2

ρ − 3m2
φ

2
√

2(m2
ρ −m2

K∗)
. (5.26)

This leads to a somewhat larger mixing angle θ � 42◦ (see Table 5.2).
For ideal mixing the ρ and ω mesons have the same quark content, 1√

2
(dd −

uu) and 1√
2
(dd + uu), respectively, Table 5.1 and (5.10). One therefore expects

that mρ = mω, which is almost fulfilled experimentally (775.3 and 782.7 MeV,
respectively). Furthermore, inserting tan θ = 1√

2
on the left-hand side of (5.25)

predicts that

mρ +mφ = 2mK∗, (5.27)

which is also in quite good agreement with the measured values [3].
The ω mass does not appear in formula (5.25). Let us therefore derive an alterna-

tive mass formula which includes all nonet members. The mass matrixM (5.13) can
be written as a productM = UDU−1 where D is the (diagonal) eigenvalue matrix
and the columns of U contain the components of the eigenfunctions. Therefore

(
m8 m81

m18 m1

)
=
(

cos θ sin θ
− sin θ cos θ

)(
λ1 0
0 λ2

)(
cos θ − sin θ
sin θ cos θ

)
. (5.28)

The octet mass m8 is the given by

m8 = λ1 cos2 θ + λ2 sin2 θ = λ1 + λ2 tan2 θ

1 + tan2 θ
. (5.29)

Solving for θ yields

tan2 θ = λ1 −m8

−λ2 +m8
. (5.30)

1A reason often invoked is that boson masses enter quadratically in the Klein-Gordon wave
equation. Squared masses also appear in chiral perturbation theories.
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For the 1−− nonet masses one obtains with (5.23) and with λ1 = mφ , λ2 = mω:

tan2 θ = 4mK∗−mρ−3mφ
−4mK∗+mρ+3mω

, (5.31)

a formula that involves all nonet masses. Introducing the meson masses gives θ �
36.5◦, which is very close to ideal mixing. However, this mass relation does not
provide the sign of tan θ .

The mass formulae can be applied to any nonet by substituting the corresponding
mesons. For the pseudoscalars the mass formulae (5.25) and (5.26) read

tan θ = 4mK −mπ − 3mη

2
√

2(mπ −mK)
⇒ θP = −11.7◦,

tan2 θ = 4mK −mπ − 3mη
−4mK +mπ + 3mη′

⇒ θP = −24.5◦, (5.32)

where we have adopted the negative sign for θp in the bottom relation. The mixing
angle also depends slightly on the choice between neutral and charged mesons
(we have introduced the masses of the π0 and K0). Another way to determine the
pseudoscalar mixing angle will be given in Sect. 7.3, see also Problem 5.1.

Table 5.2 lists the mixing angles for the well established nonets shown in Fig. 5.1.
The preference for ideal mixing in nonets with the exception of pseudoscalars

can be understood as follows. Figure 5.2 shows the oscillation between qq pairs
mediated by the exchange of gluons which induces a perturbation leading to an
additional term in the mass matrix (5.13). We model the perturbation by adding the
constant term A to the mass matrix, hence

m8 = 1

6
(1, 1,−2)

⎛
⎝

2mu + A A A

A 2md + A A

A A 2ms + A

⎞
⎠
⎛
⎝

1
1

−2

⎞
⎠

= 1

3
(mu +md + 4ms) = 1

3
(4mK∗ −mρ) (5.33)

Table 5.2 Mixing angle θ
for various qq nonets, using
the neutral members

θ [◦]
Linear Quadratic Linear

JPC ψ ′ (5.25) (5.26) (5.31) Quadratic

1−− φ 36.5 42.0 36.5 39.2

0−+ η −11.7 −6.3 −24.5 −11.3

2++ f ′
2(1525) 27.1 30.0 28.0 29.6

3−− φ3(1850) 30.9 32.7 30.8 31.8

The sign is taken from (5.25). Masses are taken from [3].
The last column refers to (5.31) with quadratic meson masses.
The column labelled ψ ′ specifies the isoscalar used in the
numerators of the mass formulae
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Fig. 5.2 Perturbation of the wavefunction by the intermediate gluonic state. The 2-gluon process
(a) is forbidden for isoscalar 1−− mesons, but allowed for isoscalar 0−+ mesons. For 1−− mesons
the oscillation proceeds via 3 or more gluons (b). For mesons with orbital excitations � > 0 the
perturbation is suppressed by the angular momentum barrier (c)

for the vector nonet, and

m81 = 1√
18
(1, 1,−2)

⎛
⎝

2mu + A A A

A 2md + A A

A A 2ms + A

⎞
⎠
⎛
⎝

1
1
1

⎞
⎠

=
√

2

3
(mu +md − 2ms) = 2

√
2

3
(mρ −mK∗). (5.34)

Hence m8 and m81 are independent of A and we reproduce (5.23) and (5.24). In
contrast, the perturbation enters the singlet mass

m1 = 1

3
(1, 1, 1)

⎛
⎝

2mu + A A A

A 2md + A A

A A 2ms + A

⎞
⎠
⎛
⎝

1
1
1

⎞
⎠

= (mu +md + [2ms +mu +md ])
3

+ 3A = 1

3
(mρ + 2mK∗)+ 3A, (5.35)

assuming again that mu = md . We now introduce m1, m8 and m81 into the
relations (5.17) between the eigenvalues λ1 = mφ and λ2 = mω to obtain

mφ +mω = 3A+ 2mK∗,

mφmω = 2mK∗mρ −m2
ρ + A(4mK∗ −mρ). (5.36)

For A = 0 we recover ideal mixing (5.27). This suggests an intuitive reason for
the strong deviation from ideal mixing in the pseudoscalar nonet: the perturbation
shown in Fig. 5.2a involves two gluons (the exchange of a single (coloured) gluon
is forbidden by colour conservation). For the ideally mixed vector mesons at least
three gluons are required by virtue of the Fermi-Yang theorem [4] which forbids
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a spin-1 state to decay into two spin-1 gluons (Fig. 5.2b).2 Hence the strength of
the perturbation A is reduced for vectors, but enhanced for pseudoscalars. On the
other hand, for orbital excitations � > 0 two-gluon exchange is allowed, but the
centrifugal barrier suppresses the qq annihilation, which also leads to a reduced
perturbation (Fig. 5.2c).

Eliminating A in (5.36) leads to the Schwinger sum rule [5]

2 ≡ (mω +mφ)(4mK∗ −mρ)− 3mωmφ + 8mK∗mρ − 3m2
ρ − 8m2

K∗ = 0 ,

(5.37)

which should be fulfilled by all meson nonets. By introducing the measured values
and ignoring mass uncertainties one finds that

(1−−) ∼ 6 MeV, (2++) ∼ 30 MeV, (3−−) ∼ 10 MeV, (5.38)

in contrast to

(0−+) ∼ 525 MeV. (5.39)

The sum rule (5.37) is poorly satisfied in the 0−+ nonet, which shows the limitations
of this very simple model.

5.3 Okubo-Zweig-Iizuka Rule

The Okubo-Zweig-Iizuka (OZI) rule states that strong interaction processes
described by Feynman graphs, which can be split into hadrons without cutting any
quark line, are suppressed. The reaction may still occur, albeit with low probability,
comparable to that of electromagnetic interactions. The OZI rule is best explained
with a few examples.

Figure 5.3a shows the decay of the f ′
2(1525) meson which, according to

Table 5.2, is a nearly pure ss state. The s and s quarks are transferred to the final

statesK+K− orK0K
0
. The Feynman diagram cannot be split into hadrons without

cutting any quark line. In contrast, the diagram in Fig. 5.3b can be split by the
vertical dashed line into two parts without crossing any quark line, the f ′

2(1525)
on the left and the two pions on the right. This process is OZI suppressed: the
branching ratio for the decay into two pions is 8.2 × 10−3, while KK decay occurs
with a probability of 89%. The remaining 11% are attributed to the OZI allowed
f ′

2(1525)→ ηη decay, where the two η mesons are made of ss pairs, see (5.12) for

2Note that the Landau-Yang theorem also forbids the decay of 3− mesons into two gluons, as well
as all odd spin negative parity mesons (Appendix A).
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Fig. 5.3 OZI-allowed (a, c) and OZI-suppressed decays (b, d) of the f ′
2(1525) and ψ(3770)

mesons

the wavefunction of the η. The exchanged light quark in Fig. 5.3a is replaced by a
strange quark.

A further example of OZI suppression is the decay of the φ(ss) meson into
π+π−π0, which occurs with a branching fraction of 15%, compared to 83% for
the OZI allowed KK decay. Here the π+π−π0 mode is enhanced by the larger
phase space (Q value of � 600 MeV for 3π , compared to only � 30 MeV forKK).
In fact, the decay of the f ′

2 and the φ into pions occurs through an OZI allowed
process via the small admixture of uu and dd in their wavefunctions.

The OZI rule suppresses the production of s quarks in proton-antiproton annihi-
lation, since neither proton nor antiproton contain valence s or s quarks. This allows
the pseudoscalar mixing angle to be determined from the measured annihilation
rates into two mesons (Problem 5.1).

Figure 5.3b shows as a further example the decay of the ψ(3770) into DD
mesons (branching fraction close to 100%). The decay ψ(3770) → J/ψ ππ is
OZI suppressed with a branching fraction of ∼3×10−3. Note that the ψ(2S) is too
light to decay into DD pairs and decays with �53% probability into J/ψ ππ . This
an OZI suppressed decay which competes with electromagnetic (radiative) decays,
in particular γ transitions to the charmonium P states (�29%, Sect. 9.1).
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Chapter 6
SU(2)

6.1 Rotation Matrices

As already mentioned in Sect. 3.1 an active rotation of the physical system is
represented by the operator1

U( �J ) = e−i �J ·�α. (6.1)

In this and the following chapters we shall use the lower case letters j and i for the
spin and isospin to avoid confusion with the operators �J and �I . We will also use
natural units, e.g. setting h̄ = 1 throughout.

The unitary operator (6.1) belongs to the SU(2) group. SU(2) symmetry means
that this operator commutes with the Hamiltonian, see (3.5), and thus refers to
invariance under rotations in coordinate space when dealing with spin, and to charge
independence when dealing with isospin. The three generators J1, J2 and J3 (the
components of �J ) obey the commutation relation

[Ji, Jj ] = iεijkJk , (6.2)

where the structure constants εijk are given in Table 6.1. They are the elements of
the antisymmetric unit tensor. The relation (6.2) is a property of angular momentum
and is fulfilled for any value of the spin or isospin.

Now, depending on the value of j or i the spinors or isospinors span a 2j + 1
or 2i + 1 dimensional space. The operator (6.1) needs to be represented by square

1For a discussion on active and passive rotations see Fig. 18.1 in Chap. 18.
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Table 6.1 SU(2) structure
constants

ijk 123 213 312 321 231 132

εijk 1 −1 1 −1 1 −1

Further combinations with repeated indices vanish

Table 6.2 Matrix elements of the SU(2) generators; m and m′ vary between −j and +j ; omitted
matrix elements vanish

m 〈j m|O|j m′〉 O

m′ + 1
√
(j −m′)(j +m′ + 1) J+ For

1
2

√
(j −m′)(j +m′ + 1) J1 −j ≤ m′ ≤ j − 1

− i
2

√
(j −m′)(j +m′ + 1) J2 Ditto

m′ m′ J3 −j ≤ m′ ≤ j
m′ − 1

√
(j +m′)(j −m′ + 1) J− For

1
2

√
(j +m′)(j −m′ + 1) J1 −j + 1 ≤ m′ ≤ j

i
2

√
(j +m′)(j −m′ + 1) J2 Ditto

Operating on |jm′〉 gives O|jm′〉 = ∑
m |jm〉〈j m|O|j m′〉

matrices with the corresponding dimensions. Let us consider active rotations by the
angle θ about the y-axis and define the Wigner rotation matrix:

d
j

mm′(θ) = 〈m|
U︷ ︸︸ ︷

e−iJ2θ |m′〉 (6.3)

Expanding the operator U gives

U = 1 − iJ2θ + 1

2! (−iJ2θ)
2 + . . . (6.4)

We need the matrix elements of (J2)
n. Table 6.2 lists the matrix elements of the

three generators and of the ladder operators J± = J1 ± iJ2, which will be used in
later chapters. They follow from the commutation rules (6.2), see Appendix C. For
example, for spin- 1

2 the rotations are represented by 2-dimensional matrices and we
need the fundamental representation of the SU(2) group, which is described by the
three matrices

(J1) = 〈m|J1|m′〉 = 1

2

(
0 1
1 0

)
= 1

2
(σ1),

(J2) = 〈m|J2|m′〉 = 1

2

(
0 −i
i 0

)
= 1

2
(σ2),

(J3) = 〈m|J3|m′〉 = 1

2

(
1 0
0 −1

)
= 1

2
(σ3). (6.5)
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One recognizes the Pauli matrices (σi). Applying J2 twice gives

〈m|(J2)
2|m′〉 =

∑
k

〈m|J2|k〉〈k|J2|m′〉 = 1

4

(
0 −i
i 0

)(
0 −i
i 0

)
= 1

4

(
1 0
0 1

)
.

(6.6)

The expansion (6.4) in matrix form is then equal to

d
1
2
mm′(θ) = 〈m|e−iJ2θ |m′〉

=
(

1 0
0 1

)
− i

(
0 −i
i 0

)
θ

2
− 1

2

(
1 0
0 1

)(
θ

2

)2

+ i

6

(
0 −i
i 0

)(
θ

2

)3

+ . . .

=
(

1 − 1
2

(
θ
2

)2 + . . . , − θ
2 + 1

6

(
θ
2

)3 + . . .
θ
2 − 1

6

(
θ
2

)3 + . . . , 1 − 1
2

(
θ
2

)2 + . . .

)
=
(

cos θ2 − sin θ
2

sin θ2 cos θ2

)
.

(6.7)

For j = 1 the matrix representation of SU(2) is given by 3-dimensional Pauli
matrices which can be derived by using Table 6.2. For example, the matrix elements
of J2 are needed for rotations:

(J2) ≡ 〈m|J2|m′〉 = 1√
2

⎛
⎝

0 −i 0
i 0 −i
0 i 0

⎞
⎠ . (6.8)

For the sake of completion we also list below the Wigner d matrices (6.3) for spins 1,
3
2 and 2. They will be used later in the chapter on angular distribution. The following
formula is useful for computations and to get higher spin matrices:

d
j

mm′(θ) = √
(j +m)!(j −m)!(j +m′)!(j −m′)!

×
∑
χ

(−1)m−m′+χ

(j +m′ − χ)!(j −m− χ)(m−m′ + χ)!χ !

×
(

cos
θ

2

)2j+m′−m−2χ

×
(

sin
θ

2

)m−m′+2χ

, (6.9)

where χ = 0, 1, 2. . . and summation terms with negative factorials are ignored. The
labels j and m stand for the spin and its projection, or equivalently for the isospin i
and i3. The d matrices satisfy the following symmetry relations:

d
j

m′m(θ) = (−1)m−m′
d
j

mm′(θ) and d
j

m′m(θ) = d
j

−m−m′ (θ) . (6.10)



60 6 SU(2)

Table 6.3 Wigner d-functions for spin j = 1
2 , 1, 3

2 and 2

d
1
2
mm′ (θ) =
(

cos θ2 − sin θ
2

sin θ
2 cos θ2

)

d1
mm′ (θ) =
⎛
⎜⎜⎜⎝

1+cos θ
2 − sin θ√

2
1−cos θ

2

sin θ√
2

cos θ − sin θ√
2

1−cos θ
2

sin θ√
2

1+cos θ
2

⎞
⎟⎟⎟⎠

d
3
2
mm′ (θ) =
⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1+cos θ
2 cos θ2 −√

3
[

1+cos θ
2

]
sin θ

2

√
3
[

1−cos θ
2

]
cos θ2 − 1−cos θ

2 sin θ
2√

3
[

1+cos θ
2

]
sin θ

2
3 cos θ−1

2 cos θ2 − 3 cos θ+1
2 sin θ

2

√
3
[

1−cos θ
2

]
cos θ2√

3
[

1−cos θ
2

]
cos θ2

3 cos θ+1
2 sin θ

2
3 cos θ−1

2 cos θ2 −√
3
[

1+cos θ
2

]
sin θ

2

1−cos θ
2 sin θ

2

√
3
[

1−cos θ
2

]
cos θ2

√
3
[

1+cos θ
2

]
sin θ

2
1+cos θ

2 cos θ2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

d2
mm′ (θ) =
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

=
[

1+cos θ
2

]2 − 1+cos θ
2 sin θ

√
6

4 sin2 θ − 1−cos θ
2 sin θ

[
1−cos θ

2

]2

1+cos θ
2 sin θ 1+cos θ

2 (2 cos θ − 1) −
√

3
2 sin θ cos θ 1−cos θ

2 (2 cos θ + 1) − 1−cos θ
2 sin θ

√
6

4 sin2 θ

√
3
2 sin θ cos θ 3

2 cos2 θ − 1
2 −

√
3
2 sin θ cos θ

√
6

4 sin2 θ

1−cos θ
2 sin θ 1−cos θ

2 (2 cos θ + 1)
√

3
2 sin θ cos θ 1+cos θ

2 (2 cos θ − 1) − 1+cos θ
2 sin θ[

1−cos θ
2

]2
1−cos θ

2 sin θ
√

6
4 sin2 θ 1+cos θ

2 sin θ
[

1+cos θ
2

]2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The indices m and m′ are understood to decrease from left to right and from top to
bottom. For example, for j = 1 the matrix elements are

⎛
⎜⎜⎝
d1

11(θ) d1
10(θ) d1

1−1(θ)

d1
01(θ) d1

00(θ) d1
0−1(θ)

d1−11(θ) d
1−10(θ) d

1−1−1(θ)

⎞
⎟⎟⎠ . (6.11)

The d-functions are listed in Table 6.3 for j ≤ 2.
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Fig. 6.1 Weight diagram of
the pion (3-dimensional
representation of SU(2)). The
ladder operator I+ (I−)
increases (decreases) i3 by
one unit

As a first example, let us apply SU(2) rotations to the isospinors of the pion.
Among the three generators of SU(2), only I3 is diagonal (corresponding to i3
conservation). The operator I3 is represented by the matrix

(I3) ≡ 〈m|I3|m′〉 =
⎛
⎝

1 0 0
0 0 0
0 0 −1

⎞
⎠ , (6.12)

see also Problem 6.1. Figure 6.1 shows the eigenvalues i3 of I3 (weight diagram
of the 3-dimensional representation of SU(2)). Let us now perform a rotation by
180◦ about the isospin y-axis. We need the 3-dimensional representation of rotations
applied on the π+ isospinor. Thus, according to Table 6.3,

d1
mm′ |π+〉 =

⎛
⎝

0 0 1
0 −1 0
1 0 0

⎞
⎠
⎛
⎝

1
0
0

⎞
⎠ =

⎛
⎝

0
0
1

⎞
⎠ = |π−〉, (6.13)

and similarly for |π−〉: d1
mm′ |π−〉 = |π+〉. For the π0 one gets the opposite sign:

d1
mm′ |π0〉 =

⎛
⎝

0 0 1
0 −1 0
1 0 0

⎞
⎠
⎛
⎝

0
1
0

⎞
⎠ = −

⎛
⎝

0
1
0

⎞
⎠ = −|π0〉. (6.14)

The last relation leads to a negativeG parity for the π0, sinceC(π0) = +1. Charged
pions have also negative G parity and therefore the plus sign in (6.13) requires that

C|π±〉 = −|π∓〉. (6.15)

6.2 Isospinors of Quark and Antiquark

As an application of SU(2) let us derive expressions for the isospinors of the u and
d quarks and their antiquark partners. The goal is to symmetrize the wavefunctions
of the light mesons listed in Table 5.1 and to make the i = 0 and 1 wavefunctions
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Fig. 6.2 Weight diagrams of the fundamental representation 2 of SU(2) and of the conjugate
representation 2* for antiquarks

eigenstates of theG parity. Figure 6.2 shows the weight diagram of the fundamental
representation of SU(2), and that of the conjugate representation. Let us apply a
passive rotation about the y-axis of the quark isospinor with components u and d .
According to Table 6.3 with θ → −θ

(
u′
d ′
)

=
(

cos θ2 sin θ
2

− sin θ2 cos θ2

)(
u

d

)
, (6.16)

hence

u′ = u cos
θ

2
+ d sin

θ

2
,

d ′ = −u sin
θ

2
+ d cos

θ

2
. (6.17)

Charge conjugation transforms a quark q into its antiquark q with the definition

C|q〉 = +|q〉. (6.18)

Charge conjugation u = Cu and d = Cd flips the sign of i3 (Fig. 6.2). Reversing
the order of the Eq. (6.17) and applying C gives

d ′ = −u sin
θ

2
+ d cos

θ

2
,

u ′ = u cos
θ

2
+ d sin

θ

2
, (6.19)

or in matrix form,

(
d ′

−u ′
)

=
(

cos θ2 + sin θ2
− sin θ

2 cos θ2

)(
d

−u
)
. (6.20)
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The isospinor of the antiquark with components (d, −u) has the same transformation
properties as those of the quark with components (u, d). Therefore we shall label
the isospinor of the u quark as | − u〉 (or −|u〉).

Let us now construct the flavour wavefunctions of SU(2), first for the fundamen-
tal and conjugate representations. From the matrix elements of Table 6.2 one gets
by applying the ladder operators I+ and I−

I+|d〉 = |u〉〈u|I+|d〉 = |u〉, I−|u〉 = |d〉〈d|I−|u〉 = |d〉, (6.21)

since 〈d|I+|d〉 = 〈u|I−|u〉 = 0. For the antiquarks one gets with the matrix
representations (I+) and (I−) from Table 6.2

I−|d〉 =
(

0 0
1 0

)(
1
0

)
=
(

0
1

)
= −|u〉 (6.22)

and

I+|u〉 =
(

0 1
0 0

)(
0

−1

)
=
(−1

0

)
= −|d〉 . (6.23)

The other combinations vanish, e.g. I+|u〉 =I−|u〉 = 0, etc. For the isovectors,
e.g. for the positive pion, operating with I− on |ud〉 gives

I−|π+〉 = I−|ud〉 = |dd − uu〉. (6.24)

On the other hand, Table 6.2 gives with i = 1, m′ = 1 and m = 0

I−|π+〉 = √
2|π0〉 (6.25)

and therefore the π0 isospinor reads

|π0〉 = 1√
2
|dd − uu〉. (6.26)

Applying I− a second time leads to the negative pion:

I−|π0〉 = √
2|π−〉 = 1√

2
I−|dd − uu〉 = 1√

2
| − du− du〉, (6.27)

hence |π−〉 = −|du〉 (note the minus sign).2

2The components of the antiquark isospinor are also written (−d , u) in the literature. The π+, π0

and π− wavefunctions are then given by −|ud〉, 1√
2
|uu− dd〉 and +|du〉, respectively.
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We now proceed to the symmetrization of these wavefunctions. The G parity
operation (3.18) on the u and d quarks gives

C

(
0 1

−1 0

)(
u

d

)
=
(
d

−u
)

and C

(
0 1

−1 0

)(
d

−u
)

=
(−u

−d
)
, (6.28)

leading to the transformations

Gu = d, Gu = d, Gd = −u, Gd = −u . (6.29)

HenceG reverses the sign when applied to a d or d quark. We also find thatG2u =
−u and G2d = −d , due to the fact that a rotation by 2 × 180◦ flips the sign of the
isospinor. For example, the following combinations are eigenstates of theG parity:

G(|ud̄〉 + |d̄u〉) = −(|ud̄〉 + |d̄u〉), (6.30)

G(|ud̄〉 − |d̄u〉) = +(|ud̄〉 − |d̄u〉), (6.31)

with negative and positive G parities, respectively. We have seen that the pion has
negativeG parity. Therefore, the symmetrized SU(2) wavefunctions are obtained by
adding the permuted pairs. With proper normalisation,

|π+〉 = 1√
2
(|ud̄〉 ⊕ |d̄u〉). (6.32)

We have encircled the plus sign to emphasize that the isospin wavefunctions are
symmetric under permutations of the quark and antiquark. The wavefunction of the
negative pion is

|π−〉 = − 1√
2
(|dū〉 ⊕ |ūd〉). (6.33)

For the neutral pion it is easy to verify that the orthogonal and normalized function

|π0〉 = 1

2
(|dd − uu〉 ⊕ |dd − uu〉) (6.34)

also has negative G parity. On the other hand, for a spin-0 meson the spin
wavefunction is antisymmetric, see (2.30), and for a pseudoscalar (� = 0) the orbital
wavefunction� is symmetric. Hence the total wavefunction is antisymmetric, e.g.

|π+〉 = �(� = 0) · 1√
2
(|ud̄〉 + |d̄u〉) · 1√

2
(| ↑↓〉 − | ↓↑〉). (6.35)
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In contrast, the ρ mesons have positive G parity. The isospin wavefunctions are
antisymmetric and read

|ρ+〉 = 1√
2
(|ud̄〉 � |d̄u〉),

|ρ−〉 = − 1√
2
(|dū〉 � |d̄u〉),

|ρ0〉 = 1

2
(|dd − uu〉 � |dd − uu〉). (6.36)

The spin-1 wavefunctions are symmetric, see (2.29). Hence the total wavefunctions
are again antisymmetric, e.g.

|ρ+〉 = �(� = 0) · 1√
2
(|ud̄〉 − |d̄u〉) ·

⎡
⎢⎣

| ↑↑〉
1√
2
(| ↑↓〉 + | ↓↑〉)

| ↓↓〉

⎤
⎥⎦ . (6.37)

Table 6.4 shows the symmetrized flavour wavefunctions of the pseudoscalar and
vector mesons for the i = 1 and i = 0 isospin multiplets. For completeness we
also list the wavefunctions of the two kaon isodoublets which are discussed below.
We will see in Chap. 7 that the SU(2) multiplets can in turn be grouped into nonets
belonging to the higher symmetry group SU(3). The 0−+ SU(3) wavefunctions are
symmetric, the 1−− ones antisymmetric. The i = 1 wavefunctions have negativeG
parities for 0−+ and positiveG parities for 1−−. The i = 0 octet |8〉 and singlet |1〉

Table 6.4 Symmetrized flavour wavefunctions of the light-quark ground state 1S0 and 3S1
mesons

i 11S0 (0−+) 13S1 (1−−)

1 |π+〉 = 1√
2
|ud + du〉 |ρ+〉 = 1√

2
|ud − du〉

|π0〉 = 1
2 (|dd − uu〉 + |dd − uu〉) |ρ0〉 = 1

2 (|dd − uu〉 − |dd − uu〉)
|π−〉 = − 1√

2
|du+ ud〉 |ρ−〉 = − 1√

2
|du − ud〉

0 |8〉 = 1
2
√

3
(|uu+ dd − 2ss〉 |8〉 = 1

2
√

3
(|uu+ dd − 2ss〉

+|uu+ dd − 2ss〉) −|uu+ dd − 2ss〉)
|1〉 = 1√

6
(|uu+ dd + ss〉 |1〉 = 1√

6
(|uu + dd + ss〉

+|uu+ dd + ss〉) −|uu+ dd + ss〉)
1
2 |K+〉 = 1√

2
|us + su〉 |K∗+〉 = 1√

2
|us − su〉

|K0〉 = 1√
2
|ds + sd〉 |K∗0〉 = 1√

2
|ds − sd〉

1
2 |K0〉 = − 1√

2
|sd + ds〉 |K∗0〉 = − 1√

2
|sd − ds〉

|K−〉 = − 1√
2
|su+ us〉 |K∗−〉 = − 1√

2
|su − us〉
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wavefunctions will be derived in Chap. 7. According to (4.4) the opposite holds for
them: positiveG parity for 0−+ and negativeG parity for 1−−.

Let us now add the strange quark. The kaons build two doublets (K+,K0) and

(K
0
,K−) with isospinors

|K〉 =
(
us

ds

)
, |K〉 =

(
sd

−su
)
. (6.38)

The minus sign for the K− takes into account the transformation properties (6.20)
of an antidoublet. Applying the ladder operators gives

I+|K0〉 =
(

0 1
0 0

)(
0
1

)
=
(

1
0

)
= |K+〉,

I−|K+〉 =
(

0 0
1 0

)(
1
0

)
=
(

0
1

)
= |K0〉,

I+|K−〉 =
(

0 1
0 0

)(
0

−1

)
=
(−1

0

)
= −|K0〉,

I−|K0〉 =
(

0 0
1 0

)(
1
0

)
=
(

0
1

)
= −|K−〉. (6.39)

The kaons are not eigenstates of the G parity. For the K+ we choose the
symmetrized isospinor in Table 6.4 with the overall plus sign. The isospinor of the
K0 is then obtained by applying I− on the u quark with I−|u〉 = |d〉. The sign of the

C parity operation is arbitrary. We choose the minus sign, C|K0〉 = −|K0〉,3 which

fixes with C|d〉 = |d〉 the overall sign of |K0〉 in Table 6.4, and with (6.39) that of
K−. With the transformations (6.29) we can derive the G parity transformations of
the kaons, for example,

|K+〉 = 1√
2
|us + su〉 ⇒︸︷︷︸

G

1√
2
|ds + sd〉 = −|K0〉. (6.40)

The kaon states transform underG as

G|K+〉 = −|K0〉, G|K0〉 = +|K−〉, G|K0〉 = +|K+〉, G|K−〉 = −|K0〉.
(6.41)

Under C they transform as

C|K0〉 = −|K0〉, C|K0〉 = −|K0〉, C|K±〉 = −|K∓〉. (6.42)

3The CP = +1 eigenstate is then K1 = 1√
2
(|K0〉 + |K0〉).
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For theK∗ mesons it is easy to show with Table 6.4 thatG andC lead to the opposite
signs:

G|K∗+〉 = +|K∗0〉, G|K∗0〉 = −|K∗−〉, G|K∗0〉 = −|K∗+〉, G|K∗−〉 = +|K∗0〉,
(6.43)

and

C|K∗0〉 = +|K∗0〉, C|K∗0〉 = +|K∗0〉, C|K∗±〉 = +|K∗∓〉. (6.44)

The eigenstates of G are obtained by symmetrizing the KK superpositions

1√
2
(|K0

K0〉 + |K−K+〉) and
1√
2
(|K0

K0〉 − |K−K+〉). (6.45)

which correspond to the i = 0 and i = 1 eigenstates, respectively (Problem 6.2).
Depending on the angular momentum � carried by the KK pair, the eigenvalue is
given by G = (−1)i+�. For � = 0 (hence positive G-parity for i = 0 and negative
G-parity for i = 1) the eigenstates ofG are obtained by adding to (6.45) the charge
conjugated states. This is for example the case for the JP = 0+ isoscalar f0(980) and
the isovector a0(980) which have the (not yet symmetrized) eigenfunctions (6.45),
respectively.4

In contrast, for the � = 1 (hence negative G-parity for i = 0 and positive G-
parity for i = 1) the charge conjugated states must be subtracted from (6.45), see
Problem 6.2.

6.3 Young Tableaux

We have constructed the isospin wavefunctions in Table 6.4 with the help of the
ladder operators I±. For isospin 1

2 the fundamental representation 2 is combined
with its conjugate 2∗, leading to an isotriplet and an isosinglet. This is illustrated
in Fig. 6.3 for the vector ground states, where the ρ0 and ω have both i3 = 0. The
isospin wavefunction of the (i = 0) ω cannot be derived from those of the (i = 1) ρ
with ladder operators, because we are dealing with two irreducible representations 2
× 2∗ = 1 + 3. The same applies to spin- 1

2 where the fundamental representation 2 is
combined with itself: the wavefunctions (2.29) and (2.30) belong to two irreducible
representations, a spin triplet and a spin singlet, respectively.

4This is true in the absence of isospin mixing. The decays of both mesons intoKK induces isospin
breaking transitions from one state to the other viaKK loops. There is experimental evidence that
the mixing angle differs significantly from the cos 45◦ = 1√

2
assumed in the superpositions (6.45)

[1].
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Fig. 6.3 Weight diagram of SU(2) × SU(2) for isospin 1
2 (left) and for spin 1

2 (right). The states
i3 = 0 and m = 0 are doubly occupied

Fig. 6.4 Definition of Young tableaux (see the text)

The method of the Young tableaux is a convenient way to find the multiplet
structure of SU(2)× SU(2), SU(2)× SU(2) × SU(2), etc., as well as couplings of
higher symmetry groups SU(n) which will be needed in the following chapters. The
procedure has been described in [2] and we shall give the recipe here without proof.

The definitions are shown in Fig. 6.4. To be valid a Young tableau should be left
and top rectified (a). Tableaux such as the one shown in (b) are not allowed. The



6.3 Young Tableaux 69

Fig. 6.5 (a) Coupling of two Young tableaux; (b) adding the a′s; (c) adding the b′s to the second
tableau in (b), see also the text

dimension of a tableau is calculated as follows: first introduce the dimension n of
SU(n) into the top left box and then subtract one unit in each box while descending
to the bottom of the tableau (Fig. 6.4c). Add one unit in each box while moving from
left to right. The number in the box is called the “value”. Now draw lines crossing
all boxes, starting from the right-hand side and moving to the bottom. A “hook”
is defined as the number of crossed boxes. The dimension of the tableau is given
by the product of values divided by the product of hooks. Figure 6.4d shows the
tableau of the fundamental representation n (dimension n) and of the conjugated
representation n∗ with dimension equal to n(n− 1) . . .2/(n− 1)(n− 2) . . .1 = n.

The couplings of two SU(n) groups is explained in Fig. 6.5. First insert a series
of a′s, b′s, c′s in each row of the second tableau (Fig. 6.5a). Then complete the first
tableau from the right by the a′s to obtain a valid tableau with no more than one a in
each column, as shown in Fig. 6.5b. Repeat the procedure with b′s, but there should
not be more b′s than a′s when counting from right lo left and from top to bottom.
An example is shown in (c) when using the second tableau in (b). Repeat with c′s
and then calculate the dimensions.
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Let us illustrate the procedure by a simple example and couple two spin- 1
2 quarks.

The tableau for SU(2) × SU(2) is

= 2

2
+ 6

3
= 1 + 3, (6.46)

giving a spin singlet and a spin triplet, as expected. Since the Young diagrams for
2 and 2* are identical, this decomposition also applies to a qq meson made of the
light flavours u and d . The next example shows the decomposition of SU(2)× SU(2)
× SU(2) for three spin- 1

2 quarks which is relevant to baryons in Sect. 13.2:

= 0 + 6

3
+ 6

3
+ 24

6
= 2 + 2 + 4, (6.47)

giving two doublets and one quadruplet. See Problems 10.1 and 10.2 for further
examples.

The connection between a Young tableau and the corresponding weight diagram
is explained in detail in Ref. [3] and in Appendix D for the most interesting case
n = 3.
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Chapter 7
SU(3)

7.1 Fundamental Representation

Let us now extend the isospin symmetry group to the three light quarks u, d and
s. Apart from I3, strangeness S is also a conserved quantum number in strong
interactions. It is often more convenient to use the hypercharge Y as a conserved
quantity, with quantum number y related to S through (1.4):

y = B + S = 1

3
+ S. (7.1)

We are therefore seeking a group of unitary operators which commute with the
Hamiltonian, but for which two of the generators are simultaneously diagonal:

[U,H ] = 0 ⇒ [I3,H ] = 0, [Y,H ] = 0 and [I3, Y ] = 0. (7.2)

The symmetry group is SU(3) with the unitary operators

U = ei
∑8
i=1Giαi , (7.3)

where the eight generatorsGi obey the commutation relations

[Gi,Gj ] = ifijkGk . (7.4)

The structure constants fijk are given in Table 7.1. Summing over k, which occurs
for the commutators [G4,G5] and [G6,G7] is implicitly assumed. For example,

[G4,G5] = i

2
G3 + i

√
3

2
G8. (7.5)
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Table 7.1 SU(3) structure
constants

ijk 123 147 156 246 257 345 367 458 678

fijk 1 1
2 − 1

2
1
2

1
2

1
2 − 1

2

√
3

2

√
3

2

The tensor fijk is antisymmetric. Combinations with repeated
indices vanish

SU(3) symmetry means that all masses in the multiplets are equal, which is not
the case, the s quark being much heavier than the u and d quarks. Nonetheless this
broken flavour symmetry, SU(3)f , leads to useful relations within hadron multiplets.
In Chap. 10 we will discuss SU(3) applied to colour, SU(3)c, which is an exact
symmetry.

The fundamental representation of SU(3) is described by the following 3 × 3
matrices which fulfil the commutation rules (7.4) (the proof is left a simple
exercise):

(G1) = 1

2

⎛
⎝

0 1 0
1 0 0
0 0 0

⎞
⎠ , (G2) = 1

2

⎛
⎝

0 −i 0
i 0 0
0 0 0

⎞
⎠ , (G3) = 1

2

⎛
⎝

1 0 0
0 −1 0
0 0 0

⎞
⎠ ,

(G4) = 1

2

⎛
⎝

0 0 1
0 0 0
1 0 0

⎞
⎠ , (G5) = 1

2

⎛
⎝

0 0 −i
0 0 0
i 0 0

⎞
⎠ , (G6) = 1

2

⎛
⎝

0 0 0
0 0 1
0 1 0

⎞
⎠ ,

(G7) = 1

2

⎛
⎝

0 0 0
0 0 −i
0 i 0

⎞
⎠ , (G8) = 1

2
√

3

⎛
⎝

1 0 0
0 1 0
0 0 −2

⎞
⎠ , (7.6)

with (Gi) ≡ 1
2 (λi), where the Gell-Mann matrices (λi) replace the Pauli matrices

of SU(2). The diagonal operators are I3 and Y with

I3 ≡ G3 and Y ≡ 2√
3
G8. (7.7)

The quantum numbers i3 and y for the three light quarks can be read off the diagonal
elements of the corresponding matrices (I3) and (Y ). The weight diagram of the
fundamental representation is shown in Fig. 7.1 (left). The SU(2) matrices (I1) and
(I2) (6.5) are embedded in G1 and G2, and occur also in G4, G5 (first and third
rows and columns) and in G6 ,G7 (second and third rows and columns): SU(3)
therefore includes three SU(2) subgroups, those of the I -spin, and the so-called V -
spin and U -spin, respectively. The corresponding ladder operators consist of our
already familiar

I± = G1 ± iG2 , (7.8)
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Fig. 7.1 Left: weight diagram of the fundamental representation (3) of SU(3). Right: weight
diagram of the conjugate representation (3∗)

plus the new ones

V± = G4 ± iG5 , U± = G6 ± iG7 . (7.9)

The generatorsGi are Hermitian (G†
i = Gi) and therefore

I± = I
†
∓, V± = V

†
∓, U± = U

†
∓. (7.10)

The three flavour vectors

u =
⎛
⎝

1
0
0

⎞
⎠ , d =

⎛
⎝

0
1
0

⎞
⎠ , s =

⎛
⎝

0
0
1

⎞
⎠ (7.11)

are eigenstates of the matrices (I3) and (Y ), see (7.6). By acting on the wavefunc-
tions the ladder operators increment or decrement the quantum numbers i3 and y by
one unit, as illustrated in Fig. 7.2. For example, V+ transforms an s quark into a u
quark: applying the matrix (V+) on an s quark indeed gives

V+|s〉 =
⎛
⎝

0 0 1
0 0 0
0 0 0

⎞
⎠
⎛
⎝

0
0
1

⎞
⎠ =

⎛
⎝

1
0
0

⎞
⎠ = |u〉. (7.12)

However, when using the commutators (7.4), the demonstration becomes also valid
for representations of higher dimensions:

I3V+ = I3(G4 + iG5) = I3G4 + iI3G5 = i

2
G5 +G4I3 + i

(
− i

2
G4 +G5I3

)

= 1

2
(G4 + iG5)+ (G4 + iG5)I3 = V+

(
I3 + 1

2

)
. (7.13)
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Fig. 7.2 The raising and
lowering operators I±
increase or decrease i3 by one
unit, while V± and U±
increase or decrease i3 by 1

2
and y by one unit

Table 7.2 Commutation rules for the SU(3) ladder operators

[Y, I±] = 0 [Y,U±] = ±U± [Y, V±] = ±V±
[I3, I±] = ±I± [I3, U±] = ∓ 1

2U± [I3, V±] = ± 1
2V±

[I+, I−] = 2I3 [U+, U−] = 3
2Y − I3 [V+, V−] = 3

2Y + I3
[I+, V−] = −U− [I+, U+] = V+ [U+, V−] = I−
[I+, V+] = 0 [I+, U−] = 0 [U+, V+] = 0

I3V+ applied on |i3y〉 gives

I3V+|i3y〉 = V+
(
i3 + 1

2

)
|i3y〉 =

(
i3 + 1

2

)
V+|i3y〉. (7.14)

On the other hand,

YV+ = 2√
3
G8(G4 + iG5) = 2√

3

(
G4G8 + i

√
3

2
G5

)
+ 2√

3

(
iG5G8 +

√
3

2
G4

)

= 2√
3
G4G8 + iG5 + i 2√

3
G5G8 +G4

= G4Y + iG5Y +G4 + iG5 = V+(Y + 1). (7.15)

Therefore

YV+|i3y〉 = V+(Y + 1)|i3y〉 = (y + 1)V+|i3y〉. (7.16)

Thus V+ raises i3 by + 1
2 and y by +1, e.g. V+ transforms an s quark into a u

quark. Likewise U+|s〉 = |d〉 and I+|d〉 = |u〉. The commutation rules in Table 7.2
can be derived from the structure constants in Table 7.1 (Problem 7.1). Further
commutators follow from (7.10).
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7.2 Conjugate Representation

What about the antiquarks? The Young tableaux of the fundamental and conjugate
representations of SU(3) are different,

and so are the weight diagrams (Fig. 7.1). Let us write for the antiquark states the
column vectors

u =
⎛
⎝

1
0
0

⎞
⎠ , d =

⎛
⎝

0
1
0

⎞
⎠ , s =

⎛
⎝

0
0
1

⎞
⎠ . (7.17)

The matrices (7.6) do not represent the conjugate representation. In particular, (G3)

and (G8) should have the opposite signs for i3 and y. The group elements of 3∗ are
obtained by complex conjugating the unitary operator U (7.3), i.e. by replacing the
generatorsGi by G′

i = −G∗
i :

G′
1 = −G1, G

′
2 = G2, G

′
3 = −G3,

G′
4 = −G4, G

′
5 = G5,

G′
6 = −G6, G

′
7 = G7,

G′
8 = −G8, (7.18)

which also fulfil the commutation rules (7.4). For example, according to Table 7.1
the commutator betweenG′

1 andG′
5 should read

[G′
1,G

′
5] = − i

2
G′

6 = i

2
G6, (7.19)

which is correct since

[G′
1,G

′
5] = G′

1G
′
5 −G′

5G
′
1 = G5G1 −G1G5 = i

2
G6. (7.20)

For antiquarks the ladder operators V± and U± are represented by the matrices

(I±)′ = (G′
1)± i(G′

2) = −(G1)± i(G2) = −(I∓),
(V±)′ = (G′

4)± i(G′
5) = −(G4)± i(G5) = −(V∓),

(U±)′ = (G′
6)± i(G′

7) = −(G6)± i(G7) = −(U∓). (7.21)



76 7 SU(3)

Therefore I±, V± and U± flip signs when applied on antiquarks (Problem 7.2), as
was the case for I± in SU(2), see (6.22,6.23):

I+|u〉 = −|d〉, I−|d〉 = −|u〉,
V+|u〉 = −|s〉, V−|s〉 = −|u〉,
U+|d〉 = −|s〉, U−|s〉 = −|d〉. (7.22)

From the 3∗ weight diagram (7.1) one immediately sees that all other combinations
must vanish (e.g. V−|u〉 = 0).1

We have now acquired all the tools needed to construct the SU(3) wavefunctions
of qq mesons. Coupling 3 with 3∗ gives

= 3 × 3∗ = 8 + 1, (7.23)

an octet and a singlet. The weight diagram is easily obtained by superimposing the
three triangles of the conjugate representation to the corners of the fundamental
one, as shown in Fig. 7.3 for pseudoscalar mesons, i3 and y being additive quantum
numbers. The center of the hexagon (i3 = y = 0) is occupied by three states, the
i = 1 and the two i = 0 states (5.3).

Let us derive the wavefunctions of the two isoscalar states, first for the octet
member. By applying U+ on the π+ and then V− (green arrows in Fig. 7.3) one
obtains the state

|ϕ〉 = V−U+|π+〉 = V−U+|ud〉 = −V−|us〉 = −|ss〉 + |uu〉. (7.24)

On the other hand, operating with I− on |π+〉 leads to |ϕ′〉 = |dd̄〉 − |uū〉,
the (unnormalized) π0. The state |ψ〉 orthogonal to |ϕ′〉 is found by the standard
procedure illustrated in Fig. 7.4. Defining

|ψ〉 = |ϕ′〉 − α|ϕ〉= |dd̄〉 − |uū〉 + α(|ss〉 − |uu〉) (7.25)

such that 〈ϕ′|ψ〉 = 0, requires α = −2, hence

|ψ〉 = |dd̄〉 − |uū〉 − 2(|ss̄〉 − |uū〉) = |uū〉 + |dd̄〉 − 2|ss̄〉. (7.26)

1Note that one needs to move twice around the periphery of the 3∗ triangle to retrieve the original
state, e.g. when moving clockwise, u → −s → d → −u→ s → −d → u.
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Fig. 7.3 The nonet of the
0−+ mesons (3 × 3∗
representation) decomposes
into an octet and a singlet

Fig. 7.4 Gram-Schmidt
procedure to find the state
orthogonal to ϕ ′

The normalized state is

|8〉 = 1√
6
(|uū〉 + |dd̄〉 − 2|ss̄〉) . (7.27)

The qq combination orthogonal to all octet states is the singlet state

|1〉 = 1√
3
(|uū〉 + |dd̄〉 + |ss̄〉) , (7.28)

as advertised earlier (5.3). With the ladder operators shown in Fig. 7.3 one can
construct the wavefunctions of the mesons along the periphery of the hexagon.
Again, one needs to circle twice to retrieve the sign of the original state. However,
the eigenstates of I3 and Y are defined up to phase factors eiφ and we wish to
retain within isospin multiplets the SU(2) symmetries discussed in Sect. 6.2. Starting
with |π+〉 = |ud〉 and moving counterclockwise around the hexagon we define the
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meson wavefunctions as follows:

U+|ud〉 = −|us〉 ≡ −|K+〉,
I−(−|us〉) = −|ds〉 ≡ −|K0〉,
V−(−|ds〉) = +|du〉 ≡ −|π−〉,
U−|du〉 = +|su〉 ≡ −|K−〉,
I+|su〉 = −|sd〉 ≡ +|K0〉,

V+(−|sd〉) = −|ud〉 ≡ −|π+〉. (7.29)

These phase choices correspond to the SU(3) wavefunctions before symmetrization
listed in Table 6.4. The kaon wavefunctions satisfy the relations (6.39). For example,

I+|K−〉 = I+(−|su〉) = |sd〉 = −|K0〉,
I−|K+〉 = I−|us〉 = |ds〉 = |K0〉. (7.30)

7.3 Radiative Meson Decays

As an application of the SU(3) let us predict with the flavour wavefunctions the
relative rates between radiative decays of vector mesons. We shall first compute
the branching ratios of the decays ω → π0γ , ρ0 → π0γ and ρ± → π±γ , and
then compare with experimental results. In these processes the mesons in the initial
and final states have the same (negative) parities. The photon removes one unit of
angular momentum and flips the spin of one the quarks. Hence these decays are
M1 transitions involving the interaction of the quark magnetic moments �μk with the
field of the photon. The transition operator is given by

M =
2∑
1

�μk · �ε =
2∑
1

gek

2mk
�sk · �ε =

2∑
1

ekξk�sk · �ε, (7.31)

where g = 2 and ξk ≡ 1
mk

. The sum extends over the quark and antiquark
masses mk , charges ek and spins �sk . Let us choose the quantization axis along the
flight direction of the photon and assume +100% polarization of the vector meson
(Fig. 7.5). The photon is then right-circularly polarized [1] and the electric field is
proportional to

�ε = 1√
2
(1, i, 0), (7.32)
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Fig. 7.5 Radiative decay of a
100% polarized vector meson

hence

�sk · �ε = 1√
2
s+k, (7.33)

where s+k is the SU(2) raising ladder operator (s1 + is2)k .
For ω → π0γ the transition operator is represented by the matrix element

Mω = ξ√
2

×
〈
(dd̄ + uū)− (d̄d + ūu)

2
[↑↑]

∣∣∣∣e1s+1 + e2s+2

∣∣∣∣
(dd̄ − uū)+ (d̄d − ūu)

2

[↑↓ − ↓↑√
2

] 〉
.

(7.34)

We have introduced the SU(3) wavefunctions from Table 6.4 (ideally mixed ω)
and the SU(2) spin functions (2.29, 2.30). We have also assumed that mu = md .
The first and second terms of the ladder operators give

ξe

4
√

2

(
− 1√

2

)(
−1

3
− 2

3
− 1

3
− 2

3

)
= ξe

4
(7.35)

and

ξe

4
√

2

(
1√
2

)(
1

3
+ 2

3
+ 1

3
+ 2

3

)
= ξe

4
, (7.36)

hence

Mω = ξe

2
. (7.37)

We repeat the calculation for ρ0 → π0γ by replacing the positive signs by negative
signs in the left-hand side of (7.34):

Mρ0 = ξ√
2

×
〈
(dd̄ − uū)− (d̄d − ūu)

2
[↑↑]

∣∣∣∣e1s+1 + e2s+2

∣∣∣∣
(dd̄ − uū)+ (d̄d − ūu)

2

[↑↓ − ↓↑√
2

] 〉
.

(7.38)
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The first and second terms give

ξe

4
√

2

(
− 1√

2

)(
−1

3
+ 2

3
− 1

3
+ 2

3

)
= −ξe

12
(7.39)

and

ξe

4
√

2

(
1√
2

)(
1

3
− 2

3
+ 1

3
− 2

3

)
= −ξe

12
, (7.40)

therefore

Mρ0 = −ξe
6
. (7.41)

The ω and ρ masses are almost equal and hence also the final state phase space
factors. The ratio of partial decay widths is

�(ω → π0γ )

�(ρ0 → π0γ )
�
∣∣∣∣
Mω

Mρ0

∣∣∣∣
2

= 9. (7.42)

Finally for ρ± → π±γ , e.g. ρ− decay:

Mρ− = ξ√
2

〈
du− ud√

2
[↑↑]

∣∣∣∣e1s+1 + e2s+2

∣∣∣∣
du+ ud√

2

[↑↓ − ↓↑√
2

] 〉
.

(7.43)

The first and second terms give

ξe

2
√

2

(
− 1√

2

)(
−1

3
+ 2

3

)
= −ξe

12
and

ξe

2
√

2

(
1√
2

)(
−2

3
+ 1

3

)
= −ξe

12
,

(7.44)

hence

Mρ− = −ξe
6
, (7.45)

equal to Mρ0 , as expected from charge invariance.
Let us now compare these predictions with data. The most accurate branching

ratios for ω → π0γ and ρ0 → π0γ have been obtained by comparing the cross
sections for ω and ρ0 production and decay in e+e− annihilation. Figure 7.6 (left)
shows the cross section measured at the VEPP-2M e+e− collider in Novosibirsk,
which is dominated by the narrow ω signal. The contribution from the very broad
and much weaker ρ0 signal is not directly visible, but can be taken into account by
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Fig. 7.6 Left: the cross section for e+e− → π0γ is dominated by ω production. The full (dashed)
curve shows the fit including (neglecting) ρ0 → π0γ interference [2]. The dispersive shape at the
upper energy end is due to the interference between e+e− → ω → π0γ and e+e− → φ → π0γ .
Right: Primakoff production of the ρ meson on a heavy target A

a fit using the vector dominance model (VDM) [2]. With the recommended values
for the decay branching ratios f [3] one finds the partial widths � = f × �T

�(ω → π0γ ) = 0.0840 × 8.49 MeV = 713 keV,

�(ρ0 → π0γ ) = 4.7 × 10−4 × 149.1 MeV = 70 keV. (7.46)

Taking into account the experimental errors (mainly from ρ0 decay) one obtains the
experimental ratio

�(ω → π0γ )

�(ρ0 → π0γ )
= 10.2 ± 1.3, (7.47)

which is in agreement with the prediction (7.42).
The decay ρ± → γπ± is difficult to measure owing to the smallness of the

branching ratio. It was investigated with the inverse reaction γπ± → ρ±. In the
Primakoff process a high energy (e.g. 200 GeV) charged pion is scattered in the
Coulomb field of a heavy target, such as Cu or Pb (Fig. 7.6, right). Photon exchange
dominates nuclear processes at small momentum transfer and the cross section for
ρ± → γπ+ can be calculated [4]. The recommended value for the partial width
is [3]

�(ρ± → π±γ ) = 67.1 ± 7.4 keV, (7.48)

which agrees with the neutral mode (7.46). Other radiative decays such as K∗+ →
K+γ andK∗0 → K0γ can be calculated with the same procedure and compared to
experimental data from Primakoff scattering (Problem 7.3).

We have seen in Sect. 5.2 how the pseudoscalar mixing angle can be obtained
from the 0−+ masses. The following application of SU(3) shows how this angle
is determined directly from the measured partial widths for π0, η, and η′ → γ γ

decays. Let us write the photon wavefunction as a superposition of qq pairs with
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Fig. 7.7 The photon as a
superposition of uu, dd , and
ss pairs

couplings equal to the quark charges Qk (Fig. 7.7). The normalized wavefunc-
tion

|γ 〉 = 1√
2

√
3

2

[(
2

3
uū− 1

3
dd̄ − 1

3
ss̄

)
−
(

2

3
ūu− 1

3
d̄d − 1

3
s̄s

)]
. (7.49)

is chosen to be antisymmetric like that of the ω since the photon is also a vector
boson. In fact, the symmetric wavefunction—with the plus sign—would lead to a
vanishing π0 decay rate.

The matrix element for radiative π0 decay is obtained by replacing the wave-
function for the ω in (7.34) by (7.49):

Mπ0 = ξ√
2

1√
2

√
3

2
×

〈[
2
3uū− 1

3dd̄ − 1
3 ss̄ −

(
2
3 ūu− 1

3 d̄d − 1
3 s̄s
)]
(↑↑)

∣∣∣∣e1s+1 + e2s+2

∣∣∣∣ (dd̄−uū)+(d̄d−ūu)2
(↑↓−↓↑)√

2

〉
.

(7.50)

The s+1 term gives

ξe√
2

1√
2

√
3

2

1

2

1√
2

(
1

9
− 4

9
+ 1

9
− 4

9

)
= ξe

√
3

8

(
−2

3

)
= − ξe

4
√

3
(7.51)

and the s+2 term

ξe√
2

1√
2

√
3

2

1

2

(
− 1√

2

)(
−1

9
+ 4

9
− 1

9
+ 4

9

)
= ξe

√
3

8

(
−2

3

)
= − ξe

4
√

3
,

(7.52)

hence

Mπ0 = − ξe

2
√

3
. (7.53)

The calculation can be repeated for the octet |8〉 and the singlet |1〉 by replacing the
π0 in (7.50) by (5.3), which we leave to the reader as an exercise. To simplify, we
shall assume exact SU(3), that isms = mu = md (forms > mu see [5]). The results
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for |8 → γ γ 〉 and |1 → γ γ 〉 are:

M8 = 1√
3
Mπ0,

M1 = 2

√
2

3
Mπ0 . (7.54)

The η and η′ wavefunctions are given by the rotated superpositions (5.11). For the
η the matrix element is

Mη =M8 cos θP −M1 sin θP =
(

1√
3

cos θP − 2

√
2

3
sin θP

)
Mπ0 . (7.55)

The mass differences between η to π0 have to be taken into account to derive
the ratio of γ γ partial widths. The 0−+ mesons decay into two 1−− photons
by conserving P and C parity and hence one unit of angular momentum �

is removed from the system. The two-body phase space factor W is usually
written as

W = pF 2
� (p), (7.56)

where p is the break-up momentum in the rest frame of the decaying particle, and
F�(p) is a damping factor which suppresses high angular momenta � for small p
[6]. This factor is determined by the range of the interaction, typically equal to
1 fm (corresponding to 197 MeV/c). Convenient expressions for F�(p) are given
in Table 7.3. For large daughter momenta, F�(p)= 1, while for momenta that are
not significantly larger than 197 MeV/c the phase space factor W is proportional
to p2�+1. Following [5] we adopt the latter. With the photons carrying half of the
meson masses one then gets the ratio

�η→γ γ

�π0→γ γ

=
(
mη

mπ

)3 1

3

(
cos θP − 2

√
2 sin θp

)2
. (7.57)

Table 7.3 Damping factors
(squared) with z = (p/pR)

2

and pR = 197 MeV/c

� F 2
� (p)

0 1

1 2z
z+1

2 13z2

(z−3)2+9z

3 277z3

z(z−15)2+9(2z−5)2

4 12 746z4

(z2−45z+105)2+25z(2z−21)2
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Fig. 7.8 Left: the Crystal Ball detector [5]. The shaded area shows the 30 crystals adjacent to the
beam pipe which are vetoed to reduce background (see also Fig. 9.2 in Sect. 9.1). Right: production
of pseudoscalar mesons with quasireal photons. The leptons are scattered under small angles and
are not detected

The analogous calculation for the η′ gives2

�η′→γ γ

�π0→γ γ

=
(
mη

mπ

)3 1

3

(
sin θP + 2

√
2 cos θp

)2
. (7.58)

The 2γ decays have been measured with the Crystal Ball detector at the
DORIS e+e− storage ring at DESY. The beams were tuned to a colliding energy
of about 10 GeV to also study the heavy quark resonances in the ϒ region
(Sect. 9.2). The detector was a ball of 672 NaI(T1) crystals covering a solid
angle of 93%×4π (Fig. 7.8). The arrangement was based on an icosahedron with
each face subdivided into 36 triangles. The electron and positron beams entered
the detector through openings on either side. The light was detected by one
photomultiplier at the rear of each crystal. Charged particles could be vetoed with
proportional tubes. The energy resolution on the photon was typically σ

Eγ
= 0.027

E[GeV]−1/4 and the photon direction could be determined with an uncertainty of
about 2◦.

The measurement were performed without detecting the scattered electron and
positron which flew through the forward and backward holes (Fig. 7.8, right). The
photons were therefore quasireal (mγ � 0). The small momentum transfer to the
photon ensured the production of low mass mesons and also suppressed spin-1
contributions by virtue of the Landau-Yang theorem.

2A more involved calculation lifting the assumption ms = mu leads to the results (7.57, 7.58), but
with the trigonometric functions multiplied by the factors fπ

f8
� 0.8 and fπ

f1
� 0.95, respectively,

where fπ is the pion decay constant and f8, f1 are the octet and singlet decay constants [5].
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Fig. 7.9 2γ invariant mass distributions. Note the different bin sizes in the two mass ranges and
the logarithmic scale [5]

Figure 7.9 shows the 2γ signals for the three pseudoscalars. The observed widths
are determined by the energy resolution of the Crystal Ball and are much larger than
their natural widths �P . The partial width is given by

�(P → γ γ ) = f (P → γ γ )�P , (7.59)

where f stands for the decay branching ratio. The pseudoscalar production cross
section depends on the partial width and is given in good approximation by

σ(γ γ → P) = 16π2q

m2
P

· �(P → γ γ ) (7.60)

for small momentum transfers q to the photons [5]. From the number NP of events
observed in Fig. 7.9 one can determine the pseudoscalar partial widths from

NP = Lε · σ(γ γ → P)f (P → γ γ ) = Lε · 16π2q

m2
P

�(P → γ γ )f (P → γ γ ),

(7.61)

by using the known decay branching ratios f (P → γ γ ). The collider integrated
luminosity is L and the detection efficiency ε. The results for the partial widths
are [5]

�(π0 → γ γ ) = 7.7 ± 0.7 eV,

�(η → γ γ ) = 514 ± 39 eV,

�(η′ → γ γ ) = 4.7 ± 0.7 keV. (7.62)
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Substituting into (7.57, 7.58) leads to the pseudoscalar mixing angle

θP = (−22.4 ± 1.2)◦, (7.63)

in accord with the linear mass formula in Table 5.2.
The very short mean lives of the neutral pseudoscalars can be determined from

the processes γ γ → PS → γ γ , e.g. for the π0

τ = 1

�
= f (π0 → γ γ )

�(π0 → γ γ )
= 1

7.7 × 10−6 MeV−1 = 8.5 × 10−17 s, (7.64)

where we have used the unit conversion (1.9).
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Chapter 8
Heavy Quark Mesons

8.1 Charm Quark

The J/ψ resonance was discovered at Brookhaven National Laboratory (BNL)
and at SLAC in November 1974. The 30 GeV protons from BNL’s alternating-
gradient synchrotron impinged on a beryllium target and new particles decaying into
e+e− pairs were searched with two magnetic spectrometers. Electrons and positrons
were selected by Čerenkov hydrogen gas counters. A narrow peak—dubbed J—
was observed around the e+e− mass of 3100 MeV in the reaction pBe → JX,
J → e+e− (Fig. 8.1, left).

At SLAC electrons were collided with positrons in the SPEAR storage ring. The
outgoing particles were detected in the cylindrical magnetic spectrometer MARK
I, equipped with spark chambers and shower counters. A very sharp resonance—
dubbed ψ—was observed to decay into hadrons or μ+μ− pairs (Fig. 8.1, right)
around the collision energy E of 3100 MeV. At resonance the cross section rose by
about two orders of magnitude.

The ψ is produced by the emitted photon from e+e− annihilation. However, the
spin-1 assignment is not straightforward since the photon is virtual.1 The assignment
JPC = 1−− to the ψ follows from the dispersive line shape observed in the μ+μ−
cross section (inset in Fig. 8.1, right): the line shape is distorted by the interference
between e+e− → J/ψ → μ+μ− and e+e− → γ → μ+μ−. Indeed, interference
between two channels leading to the same final state arises when the two processes
have the same quantum numbers. Figure 8.2 (left) shows a Feynman diagram of
the production and decay of the ψ , established as a pair of bound charm-anticharm
quarks, to be explained below. The graph of the inverse reaction observed at BNL is
depicted in Fig. 8.2 (right).

1Another example of spin non-conservation in virtual processes is the spin-0 π+ which decays into
μ+νμ via the emission of a spin-1 virtual W+ boson.
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Fig. 8.1 Left: the J → e+e− resonance observed at BNL in 1974 [1]. Right: the ψ resonance
produced in e+e− collisions and decaying into hadrons. The dashed curve shows the expected
signal for a zero-width resonance folded by the experimental resolution. The tail is due to radiative
processes in e+e− [2]. The inset shows the dispersive shape of the resonance line in e+e− →
ψ → μ+μ− [3]

Fig. 8.2 Production and decay of the J/ψ resonance produced in e+e− collisions (left) and in
hadronic collisions, the latter decaying for example into an electron-positron pair (right)

The measured width of the resonance was determined by detector resolution in
the BNL experiment and by the energy spread of the colliding beams at SLAC. The
measured full width of the ψ was measured to be less than 1.3 MeV [2]. The natural
width can be estimated by comparing the integrated signal (Fig. 8.1, right) with the
integral of a Breit-Wigner cross section σ centered at the massM of the ψ (Problem
8.1):

∫ ∞

−∞
σdE =

∫ ∞

−∞
2j + 1

(2s + 1)(2s + 1)
· 4π

E2 · �ee�h

(E −M)2 + �2/4
dE

= 3

4
· 8π2

M2

(
�ee�h

�

)
= 3

4
· 8π2

M2

(
�ee

�

)(
�h

�

)
�

= 3

4
· 8π2

M2 f (e
+e−)f (h)�. (8.1)
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We have made the approximation 4π/E2 � 4π/M2, valid for a narrow resonance,
and used for the integration the formula

∫ ∞

−∞
1

(E −M)2 + �2/4
dE = 2π

�
. (8.2)

The resonance spin is j = 1 the spins of the leptons are s = 1
2 . �ee and �h are the

partial widths for ψ → e+e− and ψ → hadrons, respectively. The decay branching
ratio f (e+e−) is equal to �6%, that for decays into hadrons f (h) � 88%.

The natural width of the ψ (� = 93 keV) turned out to be surprisingly small.
The observation of this sharp resonance (now called J/ψ(1S) or simply J/ψ)
is sometimes referred to as the “November revolution” which spurred a flood
of possible theoretical explanations (Fig. 8.3, left). Only 10 days after the initial
discovery, a second narrow state, the ψ ′—now called ψ(2S)—was observed in
e+e− collisions about 600 MeV above the J/ψ . Figure 8.3 (right) shows a pictorial
event display from the MARK I experiment at SPEAR of the ψ ′ decaying into
J/ψ π+π−, with J/ψ → e+e−. The observation of the ψ ′ was soon followed by
the discovery of higher lying states at SPEAR and at DORIS/DESY (for an excellent
review on the history of the charm quark discovery see [5]).

Fig. 8.3 Left: The J/ψ discovery triggered a flood of theoretical speculations (sketch by J.D.
Jackson, credit CERN courier, April 1975). Right: event display from the MARK I detector at
SPEAR showing the ψ ′ decaying into J/ψ(→ e+e−) π+π− [4]
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Fig. 8.4 (a) Observation of the ψ(3770) in the cross section for e+e− → hadrons just above

D0D
0

production threshold (see the text, adapted from [6]). The inset shows the fitted signal after
subtracting the radiative processes from the ψ ′; (b) excitation and decay of the ψ(3770) resonance

into DD (D0D
0

or D+D−). D decay contributes to (and dominates) the hadronic final state.
The J/ψ and ψ ′ lie below threshold and decay hadronically through OZI-suppressed decays (or
through electromagnetic processes such as e+e−, μ+μ−, or γ + hadrons)

The following spin-1 resonances with masses and widths have been observed to
date:

M �

J/ψ(1S) 3097 MeV 93keV
ψ(2S) 3686 MeV 303keV
ψ(3770) 3773 MeV 27 MeV
ψ(4040) 4039 MeV 80 MeV
ψ(4160) 4153 MeV 103 MeV
ψ(4415) 4421 MeV 62 MeV.

(8.3)

The reason for the astonishing much smaller widths of the two lowest states was
settled with the discovery of the much broaderψ(3770). Figure 8.4a shows the cross
section for hadron production measured at SPEAR, normalized to the calculated
cross section for non-resonantμ+μ− production (i.e. via γ exchange only) [6]. The
fast rise towards low energy is due to the radiative tail of theψ ′. The inset shows the
data after radiative corrections and a Breit-Wigner fit, leading to a width of 27 MeV,
much larger than that of the J/ψ .

Under the assumption that theψ resonances are made of pairs cc of a new type of
heavy quark, they would decay through the emission of open charmed mesons (cq+
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cq pairs), the D mesons. However, the mass of the lightest pair of charmed mesons

(D0D
0
) is 3730 MeV (shown by the vertical arrow in Fig. 8.4a), which is larger than

the masses of the J/ψ and ψ ′. The J/ψ and the ψ ′ therefore disintegrate through
OZI-hindered processes, the former into light hadrons and the latter into J/ψ ππ
(or electromagnetically), which reduces their widths and increases their lifetimes
accordingly. The OZI suppression of the J/ψ and ψ ′ decays was the indisputable
evidence for the existence of the charm quark.

The J/ψ is the vector (1−−) ground state of the cc system (� = 0, s = 1).
The branching ratio into ρπ is 1.7%, hence its G parity is negative and from (4.4)
its isospin is i = 0. The ψ ′ = ψ(2S), ψ(4040) and ψ(4415) mesons are radially
excited vector mesons.

The ψ(3770) is a 1−− orbital excitation with two units of relative angular
momentum (13D1 state), as can be deduced from its small e+e− partial width: the
decay rate into electron-positron pairs is proportional to the overlap probability of
the quark and antiquark wavefunctions, which decreases with excitation energy and
becomes very small for � > 0 (Van Royen-Weisskopf formula [7], Problem 8.2).
The measured partial widths, plotted in Fig. 8.5 (left) show that the ψ(3770) state
does not fit in the � = 0 sequence but is the 13D1 state. The ψ(4160) has also been
suggested to be the 23D1 state. The ψ(2S) decays OZI suppressed into J/ψ ππ or
electromagnetically, e.g. to the lower lying cc states with � = 1 and j = 0, 1 or 2,
as we shall discuss in the next section.

The states aboveDD threshold decay into mesons with “open” charm (cq or qc,
q �= c). In the next section we shall extend the 11S0 nonet of the light quarks to a 16-
plet by including the c quark. The “hidden” charm isosinglet state ηc = |cc〉 with y
= 0 and mass 2983 MeV is the lightest cc hadron. It decays OZI-suppressed, e.g. into

Fig. 8.5 Left: e+e− partial widths of 1−− cc mesons. The ψ(3770), and possibly the ψ(4160),
are 13D1 and 23D1 orbital excitations. Right: e+e− partial widths of the 1−− bb mesons



92 8 Heavy Quark Mesons

KKπ or into multipion final states.The 11S0 D mesons form the two isodoublets

D+ = |cd〉,D0 = |cu〉 and D
0 = |cu〉,D− = |cd〉, (8.4)

with hypercharge y = – 1
3 and + 1

3 , respectively, and the two isosinglets

D+
s = |cs〉,D−

s = |sc〉. (8.5)

with y = ± 2
3 .

The D mesons decay mostly into kaonic final states, which reflects the Cabibbo
favoured c → sW+ over c → dW+ transition. For example, the branching ratio
f (D0 → K−π+) is 3.9 × 10−2, while f (D0 → π+π−) = 1.4 × 10−3. Also, the
“wrong” charge channelD0 → K+π− is suppressed (c �→ s) with f = 1.4×10−4.
Thus the charge of the kaon determines the flavour (c or c) of theD meson (Fig. 8.6,
top). The lifetime of the D+ meson is 1 ps, that of the D0 is 0.4 ps, which are long
enough to permit the identification of the decay vertex in high energy experiments.

Fig. 8.6 (a) Kππ mass distribution measured by MARK I with SPEAR running at a collision
energy of 4.03 GeV, showing evidence for the charged D meson [8]. Plotted are all combinations
of particles weighted by the probabilities to be pions or kaons; (b) the wrong charge distribution
does not show any signal; (c) first observation of the D±

s → φπ± by CLEO at Cornell’s CESR
[9]; (d) distribution outside the φ → K+K− signal
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Table 8.1 D∗ decay
channels and branching ratios

D∗0 D0π0 0.647 D0γ 0.353

D
∗0

D
0
π0 Ditto D

0
γ Ditto

D∗+ D0π+ 0.677 D+π0 0.307 D+γ 0.016

D∗− D
0
π− Ditto D−π0 Ditto D−γ Ditto

The decays D∗0 → D+π− and D
0∗ → D−π+ are

kinematically forbidden

Table 8.2 Quark model assignments for the charm and bottom mesons with open flavours and
known quantum numbers [10]

i = 1
2 i = 0 i = 1

2 i = 0 i = 0

cu, cd cs bu, bd bs bc

n2s+1�J J PC uc, dc sc bu, bd bs bc

11S0 0−+ D(1869.6)± Ds(1968.3)± B(5279.3)± Bs(5366.8)0 Bc(6275)±

D(1864.8)0 B(5279.6)0

13S1 1−− D∗(2010.3)± D∗
s (2112.1)± B∗(5324.7)± B∗

s (5415.4)0

D∗(2006.9)0 B∗(5324.6)0

11P1 1+− D1(2420) Ds1(2536)± B1(5721) Bs1(5830)0

13P0 0++ D∗
0 (2400) D∗

s0(2317)±a

13P1 1++ D1(2430) Ds1(2460)±a

13P2 2++ D∗
2 (2460) D∗

s2(2573)± B∗
2 (5747) B∗

s2(5840)0

13D1 1−− D∗
s1(2860)±b

13D3 3−− D∗
3 (2750) D∗

s3(2860)±

21S0 0−+ D(2550) Bc(2S)±

23S1 1−− D∗
s1(2700)±b

The C parity is that of the corresponding light quark isoscalar. The 1+− and 1++ mesons are
mixtures of the 1+± states
aThe masses are much smaller than most theoretical predictions. They have alternatively been
interpreted as four-quark states
bThese mesons are mixtures of the 13D1 and 23S1 states

The corresponding 13S1 open charm mesons are labelled D∗,D∗
s and the

J/ψ(1S) is the hidden charm y = 0 isosinglet. The D∗ mesons decay rapidly into
D mesons (Table 8.1).

Table 8.2 lists all the open charm mesons observed so far [10]. The mass
difference between D and D∗ is of the order of the pion mass. The identification
of the D∗± charge is achieved by measuring the charge of the very slow pion in

the D∗± → D0(D
0
)π± rest frame.2 The mass difference between the D∗±

s and the
D±
s is also close to the pion mass and hence the D∗±

s decays dominantly into D±
s γ

(f �94%), while f (D±
s π

0) �6%. The D±
s has many decay channels [10], among

2This heavy quark “tagging” is useful when studying D0 − D0
oscillations, since the pion charge

determines the flavour of the initial heavy quark (c or c).
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them φπ±, which was the discovery channel (Fig. 8.6, bottom), and τ±ντ which
has been used as a source of τ -neutrinos [11]. Orbital excitations have also been
reported.

8.2 Bottom Quark

The bottom quark was discovered at Fermilab in 1978 when an enhancement was
observed in the μ+μ− mass spectrum of the reaction p(Pt or Cu)→ μ+μ−X
with 400 GeV protons [12]. The muons were analyzed by a two-arm magnetic
spectrometer. Figure 8.7 (left) shows the signal from ϒ(1S) → μ+μ−. A few
years later the ϒ(1S) and radial excitations at higher masses were observed with
the CUSB detector in e+e− collisions at the Cornell’s CESR[13] and also at DORIS
(DESY) [14]. Figure 8.7 (right) shows the three lowerϒ states observed recently by
CMS with the LHC running at a center-of-mass energy of 7 TeV [15]. The masses
and widths of the (1−−) ϒ observed so far are

M �

ϒ(1S) 9460 MeV 54 keV
ϒ(2S) 10,023 MeV 32 keV
ϒ(3S) 10,355 MeV 20 keV
ϒ(4S) 10,579 MeV 21 MeV
ϒ(5S) 10,891 MeV 54 MeV
ϒ(6S) 10,987 MeV 61 MeV.

(8.6)

Fig. 8.7 Left: the ϒ(1S) decaying into a muon pair was first reported at Fermilab. The graph
shows the event distribution for two magnetic field settings in the pair spectrometer [12]. The line
shows the distribution of accidental pairs (simulated with muons from different events). Right: the
ϒ(1S, 2S, 3S) signals observed by CMS at the LHC [15]
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The existence of a fifth quark, the b quark, is responsible for the narrow widths
of the ϒ(1S, 2S, 3S) mesons. The kinematic threshold decaying into a pair of
open bottom (BB) mesons lies at 10,558 MeV, just below the mass of the ϒ(4S).
The ϒ(1S, 2S, 3S) states have substantially longer lifetimes than the states above
threshold because they have to decay through OZI-suppressed processes or electro-
magnetically. Figure 8.5 (right) shows the measured e+e− partial widths for 13S1
bb states.

In the next section we shall add to the pseudoscalar 16-plet another 9 mesons
containing the b quark. The i = 1

2 B mesons form the two isodoublets

B
0 = |bd〉, B− = |bu〉 and B+ = |ub〉, B0 = |db〉, (8.7)

with hypercharge y = − 1
3 and + 1

3 , respectively. The two isosinglets

B
0
s = |bs〉, B0

s = |sb〉 (8.8)

have y = ± 2
3 , and the two isosinglets containing two heavy quarks, the

B+
c = |cb〉, B−

c = |bc〉, (8.9)

have y = 0. The spin and parity of the B mesons are assumed from the quark model
predictions.

The hidden bottom isosinglet state ηb = |bb〉 with y = 0 and mass 9399 MeV
is the lightest bb hadron, decaying OZI-suppressed into multihadron final states.
The B mesons decay mostly into states involving D mesons (and hence ultimately
kaonic final states), since the coupling b → cW− is favoured over b → uW+. The
lifetime of the B meson (�1.5 ps) is large, comparable to that of the D+. This is
due to the dominant but kinematically forbidden bottom–top coupling. Thanks to
its long mean life, the B meson can be identified by its decay vertex in high energy
experiments.

The B0
s decays dominantly intoD−

s + anything. The event display of the ALEPH
experiment at LEP (Fig. 8.8) shows one of the first observed B0

s mesons decaying
intoψ(2S)φ, a rare decay channel with a branching ratio of 5×10−4, but convenient
to identify with the μ+μ− pair from J/ψ decay.

The B±
c is difficult to observe due to its small production cross section. A

hint was reported by OPAL at LEP in 1997, soon confirmed by CDF at Fermilab
which measured later its mass and lifetime [16]. Figure 8.9 shows the signal from
B±
c → J/ψ π± near 6.3 GeV. Note that the branching ratio for the Cabibbo

favoured B±
c → J/ψ π± is much larger than that for B±

c → J/ψ K±, while
the opposite holds for B± → J/ψ π± and the Cabibbo favoured B± → J/ψ K±
(Fig. 8.9, bottom) which enhances the signal of the B± relative to B±

c in the case of
insufficient particle identification. The lifetime of the B±

c is 0.5 ps.
The corresponding 13S1 vector mesons are labelled B∗ and the 13S1 bb ground

state is the ϒ(1S). The mass difference between B∗ and B is only 48.6 MeV, hence
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Fig. 8.8 Event display from the ALEPH detector at CERN-LEP showing one of the first observed
Bs mesons decaying into ψ(2S)φ(1020) with the φ decaying into K+K− and the ψ(2S) into
J/ψ π+π−, followed by J/ψ → μ+μ− (photo CERN)

Fig. 8.9 Top: J/ψ π± mass distribution (left) and enhanced region around the B±
c signal (right).

The peak around 5.2 GeV is due to the background channel B± → J/ψ K± with the pion mass
incorrectly attributed to the kaon [16]. Bottom: Cabibbo favoured decays of the B−

c and B−
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Fig. 8.10 B∗ − B mass
difference distribution
measured at LEP in e+e− →
Z0 → B∗X,B∗ → Bγ [17]

the B∗ decays exclusively into Bγ . Figure 8.10 shows the B∗ signal observed by
the OPAL experiment at LEP at the Z0 peak. The bb pairs led to hadron jets and the
energy of the decay γ was measured by a lead glass calorimeter.

Table 8.2 lists all the bottom mesons observed so far [10]. The B∗±
c has not been

observed yet. It is expected to decay exclusively into B±
c with the emission of a

70 MeV photon [18].

8.3 SU(4)

Let us now include the c quark in the flavour symmetry group. The quantum
numbers conserved by the strong interaction are i3, y and C, which are related to
the electric charge through (1.2) and (1.4). For mesons

Q = i3 + S + C
2

and y = S − C

3
. (8.10)

Eliminating S gives the relation between the charge and the three quantum numbers

Q = i3 + 3y + 4C

6
. (8.11)

Figure 8.11 shows the weight diagram of the fundamental representation of SU(4).
Since the c quark is very heavy the symmetry group is badly broken and is therefore
only of limited use. Nevertheless, SU(4) is convenient to classify the hadrons
containing c quarks (see also Sect. 17.1 on charmed baryons). For mesons the
16-dimensional representation reduces into a singlet and a 15-plet:
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Fig. 8.11 Weight diagram of the fundamental representation of SU(4) including the charm quark

Fig. 8.12 (a) SU(4) weight diagrams of qq mesons made of four quarks, u, d, s, c [19]; (b) with
u, d, s and b quarks; (c) weight diagram of bottom mesons projected onto the i3 − y plane [20]

= 4 × 4 = 24

24
+ 120

8
= 1 + 15. (8.12)

The weight diagrams of pseudoscalar and vector mesons are shown in Fig. 8.12a.
The nonets of SU(3) are now supplemented by a third isoscalar state, the ηc and
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J/ψ , respectively. Due to the large mass differences the cc isoscalar is not expected
to mix significantly with the octet and singlet states of SU(3). Alternatively, one
can extend SU(3) to SU(4) by including the b quark and thus with y = S + B ′

3 the
electric charge is equal to

Q = i3 + 3y + 2B ′

6
. (8.13)

The weight diagrams of pseudoscalar and vector mesons3 are shown in Fig. 8.12b
and their projections onto the i3 − y plane in Fig. 8.12c.

The SU(5) group would include all u, d , s, c and b quarks with a 4-dimensional
weight diagram which for mesons decomposes into a singlet and a 24-plet. The 25
pseudoscalar mesons contain the 16-plet shown in Fig. 8.12b or c, the 6D mesons in
Fig. 8.12a, the ηc and the B±

c . These states have all been identified experimentally.
Among the corresponding 25 vector mesons only the B∗±

c has not been observed
yet.

References

1. Aubert, J.J., et al.: Phys. Rev. Lett. 33, 1404 (1974)
2. Augustin, J.-E., et al.: Phys. Rev Lett. 33, 1406 (1974)
3. Boyarski, A., et al.: Phys. Rev. Lett. 34, 1357 (1975)
4. Abrams, G.S., et al.: Phys. Rev. Lett. 34, 1181 (1974)
5. Cahn, R.N., Goldhaber, G.: The Experimental Foundations of Particle Physics, p. 257.

Cambridge, New York (1989)
6. Rapidis, A., et al.: Phys. Rev. Lett. 39, 526 (1977)
7. Van Royen, H., Weisskopf, V.F.: Nuovo Cimento 50A, 617 (1967)
8. Peruzzi, I., et al.: Phys. Rev. Lett. 37, 569 (1976)
9. Chen, A., et al.: Phys. Rev. Lett. 51, 634 (1983)

10. Tanabashi, M., et al. (Particle Data Group): Phys. Rev. D 98, 030001 (2018)
11. Kodama, K., et al.: Phys. Lett. B 504, 218 (2001)
12. Herb, S.W., et al.: Phys. Rev. Lett. 39, 252 (1977)
13. Andrews, D., et al.: Phys. Rev. Lett. 44, 1108 (1980)
14. Bienlein, J.K., et al.: Phys. Lett. 78B, 360 (1978)
15. Khachatryan, V., et al.: Phys. Lett. B 749, 14 (2015)
16. Aaltonen, T., et al.: Phys. Rev. Lett. 100, 182002 (2008)
17. Ackerstaff, K., et al.: Z. Phys. C 74, 413 (1997)
18. Gershtein, S.S., et al.: Phys. Rev. D 51, 3613 (1995)
19. Amsler, C., DeGrand, T., Krusche, B.: In: Tanabashi, M., et al. (Particle Data Group): Phys.

Rev. D 98, 030001 (2018), p. 287
20. Amsler, C.: Nuclear and Particle Physics. IOP Publishing, Bristol (2015)

3The hypercharge is sometimes defined as y = B + S + B ′ + C + T so that relation (1.5) also
applies to heavy quark states. However, this definition does not reproduce the elegant SU(4) weight
diagrams in Fig. 8.12.



Chapter 9
Quarkonium

Quarkonia are mesons made of qq pairs of the same flavour, such as the J/ψ(1S)
(cc “charmonium”), the ϒ(1S) (bb “bottomonium”), and even the φ (ss “strangeo-
nium”), as well as their radial and orbital excitations. These states are bound by the
strong interaction mediated by gluons. The term “quarkonium” has been coined
in analogy to the electromagnetically bound e+e− system (positronium). In the
previous chapter we have dealt with the cc and bb ground state (� = 0) vector
mesons and their radial excitations (ψ and ϒ sequences). The present chapter is
devoted to their � > 0 orbital excitations.

Let us first examine the positronium system with the predicted (hydrogen-like)
spectrum shown in Fig. 9.1. The hyperfine interaction in the ground state splits the
1S0 (parapositronium) and the 3S1 (orthopositronium) states by a trifling fraction
of the positronium mass. Furthermore, the levels are almost degenerate. As we
shall see, this contrasts with quarkonium for which the energy splittings are a
substantial fraction of the mass. Parapositronium decays into 2γ with a mean life of
124 ps, orthopositronium into 3γ with a mean life of 142 ns. The first observation of
positronium dates back to 1951, when positrons from a sodium source were stopped
in a gas such as N2 or O2 [1]. Annihilation into 2γ was detected by observing the
two 511 keV annihilation γ . Quenching of orthopositronium into parapositronium
(leading to an increase of prompt decays) was demonstrated by adding a small
quantity of nitric oxide gas.

To date the 1S, 2S and 3S states have been observed, as well as the n = 10 − 31
(Rydberg) states [2]. Evidence for the 11P1 singlet state has been reported in [3].
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Fig. 9.1 The positronium
(e+e−) spectrum. Note that
the energy differences
between radial excitations are
much larger (∼5 eV) than the
hyperfine splitting of the 3S1
and 1S0 levels. The levels
with equal n are nearly
degenerated. The red stars
label E1 and the green
triangles M1 transitions

9.1 Charmonium

The ψ(2S) decays OZI suppressed into J/ψ(1S) ππ or into light hadrons with
branching fractions of 53% and 15%, respectively [4]. Radiative transitions into
lower lying cc states (� > 0) also occur with a probability of about 30%. The ψ(2S)
decays electromagnetically into the χcj states with quantum numbers � = 1, j = 0,
1 or 2 (E1 parity changing transitions) or into the ηc with � = 0, j = 0 (M1 parity
conserving transitions). These transitions have been observed first at SLAC by the
Crystal Ball detector sketched in Fig. 9.2, see also Fig. 7.8.

The collision energies of the e+ and e− beams were tuned to 1843 MeV each to
excite the ψ(2S) resonance. The ball of 672 NaI (Tl) crystals recorded all decay
photons, among them the monochromatic photons emitted by the transitions to the
χcj (13Pj ) and ηc (11S0, 21S0) states. The transition lines expected from the decays
depicted in the right-hand side of the figure were indeed observed (Fig. 9.3). This
is a direct and irrefutable proof that hadrons have an internal structure made of
elementary constituents. The measured line widths were determined by detector
resolution. The large background continuum stems from photons from π0 decays
that are emitted during the OZI-suppressed decays of the ψ(2S) resonance.

Figure 9.4 shows the cc charmonium levels [4]. The first state above charm
threshold which decays intoDD mesons is the ψ(3770), an orbitally excited vector
meson already mentioned in Sect. 8.1. The 0−+ ηc(2S) and the 1+− spin singlet
hc(1P) are now well established, but have been controversial for many years. The
hyperfine splitting of the 2S level of 47 MeV is much smaller than initially reported
by Crystal Ball (labelled 1 in Fig. 9.3).

The search and identification of the hc(1P) deserves a few more words. Radiative
transitions from the (1−−) ψ(2S) to the (1+−) hc(1P) are forbidden by C
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Fig. 9.2 The NaI(Tl) Crystal Ball (left) at the SPEAR storage ring covered a solid angle of 98%
× 4π for photon detection [5]. Charged particles could be vetoed with a multiwire proportional
chamber (MWPC) and spark chambers. The detector was moved to the DORIS ring at DESY, later
to the AGS in Brookhaven and then finally to the MAMI microtron in Mainz (right, photographed
by the author)

Fig. 9.3 Radiative decay spectrum from the ψ(2S) level observed by the Crystal Ball in e+e−
collisions. The monochromatic γ lines correspond to the transitions shown on the right (adapted
from [6])

conservation and therefore the hc(1P) cannot be produced in e+e− annihilations.
The first sign of this state emerged as a pp resonance, when protons were collided
with antiprotons at the CERN ISR [7]. Since the radiative transitions hc(1P) →
γ J/ψ(1S) are forbidden by C conservation, one expects to see instead transitions
to the J/ψ(1S) associated with the emission of pions. Five events were observed
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Fig. 9.4 Observed charmonium states and γ transitions. The red stars label E1 transitions and
the green triangles M1 transitions. Radiative transitions ψ(2S) → γhc(1P ) and hc(1P ) →
γJ/ψ(1S) are forbidden by C parity conservation

from the putative hc(1P) state at the expected resonance mass of 3525 MeV (the
center of gravity of the χcj states, see Sect. 9.4), decaying into J/ψ(1S)(→ e+e−) +
pions. Proton-antiproton annihilation was investigated by the E760 collaboration at
the Fermilab antiproton accumulator, where antiprotons collided with protons from
a hydrogen jet target. A state decaying into the isospin violating J/ψ π0 final state
was reported at the expected hc(1P) mass [8], but the claim was withdrawn when
no J/ψ π0 signal was observed with an upgraded version of the detector operated
by the E785 collaboration [9]. However, when looking for the E1 transition into the
final state ηc(1S)γ , a narrow � <1 MeV structure with 15 events was observed at
3526 MeV.

Comprehensive data on the hc(1P) were obtained with the BESIII detector [10]
at the Beijing e+e− collider BEPC. The detector, illustrated in Fig. 9.5, consists of a
superconducting 1T solenoidal magnet equipped with a drift chamber and a matrix
of 6240 CsI(Tl) crystals. Charged particle identification is achieved by dE/dx and
by time-of-flight from scintillation counters. Muons are detected by resistive plate
chambers interleaved with the iron plates providing the magnetic flux return. Data
were taken at the ψ(2S) and π0 transitions to the hc(1P) state were sought, with
hc(1P) decaying into γ ηc(1S), and where the ηc(1S) was reconstructed in sixteen
different decay channels, such as pp, K+K−π+π−, K+K−4π± or η4π± [12].
Note that he transition ψ(2S) → π0hc(1P) is isospin violating and occurs with
a branching ratio f of about 10−3, while f � 50% for the radiative E1 transition
hc(1P) → γ ηc(1S). The decay chain ψ(2S) → π0X,X → γ ηc(1S), ηc(1S) →
final state can be fully reconstructed from energy and momentum conservation.
Figure 9.5 (right) shows the distribution of mass mX recoiling against the π0. The



9.2 Bottomonium 105

Fig. 9.5 Left: the BESIII detector at the electron-positron collider BEPC [11]. Right: the hc(1P )
observed in ψ(2S) → π0hc(1P ), hc(1P ) → γηc(1S) (adapted from [9, 12]). The inset shows
one of the first evidences for the hc(1P ), observed earlier in pp annihilations at Fermilab [9]

0.7 MeV narrow signal peaks at a mass of 3525.3 ± 0.2 MeV, which lies exactly at
the center-of-mass of the χcj spin triplet (Sect. 9.4).

Meson spectroscopy in the charm region (see also Sect. 16.2) will be pursued
in 2025 by the PANDA experiment at the FAIR proton-antiproton facility near
Darmstadt.

9.2 Bottomonium

Figure 9.6 shows the bb bottomonium levels that have been observed to date. The
χbj (2P) orbitals were the first to be seen, produced by radiative decays from
the ϒ(3S) state [13]. The experiment was performed at the CESR e+e− ring
by the CUSB detector, an array of 320 rectangular NaI(Tl) crystals in a square
geometry, surrounded by lead glass counters [14]. The radiative transitions to the
χbj (1P) orbitals, followed by the radiative transitions to the ϒ(1S) ground state
[15] (labelled 1, 2, 3 and 4, 5, 6, respectively in Fig. 9.6), were discovered by CUSP
shortly afterwards by running CESR on the ϒ(2S).

High statistics data are available from the CLEO III detector at CESR. A sketch
of the apparatus, with design similar to BESIII which also features a large modular
CsI(Tl) array, is shown in Fig. 9.7. The photon spectra obtained by CLEO III
running on the ϒ(2S) and ϒ(3S) are displayed in Fig. 9.7. The top figure shows
the three transition lines 1, 2, 3 on top of a large γ background. The peak around
400 MeV is due to the experimentally unresolved lines 4, 5 and 6. The bottom figure
also shows the corresponding three lines from ϒ(3S) → γχb(2P). The peaks
around 250 and 800 MeV stem from the subsequent transitions to the ϒ(2S) and
ϒ(1S), respectively. The background was measured by running off the ϒ(2S/3S)
resonance energies (dashed lines) and by adding the contribution from the ground
state measured directly by running on the ϒ(1S) (dotted lines).
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Fig. 9.6 Observed bottomonium states (see the text)

Fig. 9.7 Left: the CLEO III / CLEO-c detector at the Cornell electron-positron collider CESR
[16]. Right: radiative transitions from the ϒ(2S) and ϒ(3S) states [17] (see the text and Fig. 9.6)

The 3P levels, which lie about 30 MeV below the open bottom threshold, have
been reported by the ATLAS collaboration at the LHC running at a collision energy
of 7 TeV [18]. Events with ϒ(1S) or ϒ(2S) were selected by their decays into
μ+μ− (Fig. 9.8, left), and γ transitions from the 1P, 2P, 3P levels to theϒ(1S) and
from the 2P, 3P levels to the ϒ(2S) were detected by the liquid argon calorimeter.
The 3P levels are observed for the first time (Fig. 9.8, right). The experimental
resolution of the calorimeter was not sufficient to resolve the fine splittings of the P
levels. The mass splitting of ∼11 MeV between the χb1(3P) and χb2(3P) has been
measured in CMS by using γ conversion into e+e− pairs [19].
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Fig. 9.8 Left: ϒ(1S) and ϒ(2S) selection windows (blue and yellow, respectively) for ATLAS
events decaying into muon pairs. The latter window is asymmetric to reduce the contamination
from the ϒ(3S). Right: distribution of μ+μ−γ events as a function of m(μ+μ−γ ) – m(μ+μ−) +
m[ϒ(1S or 2S)] (adapted from [18]). The peaks are due to the radiative transitions to the ϒ(1S)
(top red curve) and to theϒ(2S) (bottom pink curve). The inset shows the corresponding transitions

Table 9.1 Measured splittings (in MeV) between the S and P levels of charmonium and
bottomonium below open threshold

cc bb

23S1 23S1 23S1− 23S1 33S1 33S1 43S1 43S1

−13S1 −1Pj −13S1 −1Pj −23S1 −2Pj −33S1 −3Pj J PC

590 271 563 164 332 123 224 0++

175 130 100 49a 1++

130 111 86 2++

161 124 95 1+−
aFine structure unresolved

Table 9.1 lists the measured level splittings between S and P levels in bottomo-
nium, and also includes those of charmonium for comparison.

The lightest bottomonium state, the ηb(1S), was established by the BaBar
collaboration at SLAC’s PEP-II electron-positron collider. It was observed in the
radiative decay spectrum of the ϒ(3S) [20]. The ηb(2S), hb(1P) and hb(2P) were
studied by the Belle collaboration at the KEKB electron-positron collider in Japan
[21]. The hb(2P) and hb(1P) decayed into γ ηb(1S) / γ ηb(2S) and γ ηb(1S),
respectively. They were produced via the emission of two charged pions from
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Fig. 9.9 The Belle detector at the KEKB asymmetric e+e− collider [22]. 1—silicon vertex
detector, 2—forward BGO calorimeter, 3—drift chamber, 4—particle identifier (aerogel), 5—time-
of-flight counters, 6—CsI(Tl) γ -calorimeter, 7—superconducting solenoid, 8—muon detector
(resistive plate counters)

the ϒ(5S). A drawing of the Belle detector is shown in Fig. 9.9. The lepton beams
collide with different energies, hence the center of mass moves along the electron
beam direction.1

9.3 Potential Models of Quarkonium

The measured excitation spectrum of quarkonium (ss, cc and bb) shown in Fig. 9.10
suggests that the mass differences between the radial excitations is roughly indepen-
dent of quark flavour, e.g the 2S and 1S levels are separated by ∼600 MeV for all
three flavours. Furthermore, the excitation energy is relatively small compared to
at least the c and b quark masses, and hence one expects heavy quarkonia to be
non-relativistic systems (this will be justified below), which can be described by
a suitable flavour independent potential and by solving the Schrödinder equation.
Also, the level spacings and splittings are much larger in quarkonium than in

1In symmetric e+e− colliders the electron and positron collide with the same energies, hence the B
and B mesons produced at the ϒ(4S) are emitted back-to-back and the collision point, where the
B and B are produced, cannot be determined. In asymmetric colliders both B mesons are emitted
into the same hemisphere. The production point can then be reconstructed to study oscillations and

CP violation in the B0 − B0
system (see e.g [23]).
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Fig. 9.10 Excitation energies
of the quarkonia S and P
levels

positronium (Fig. 9.1), due to the much stronger binding force mediated by gluon
exchange.

The level spacings in quarkonium decrease much less rapidly with increasing
radial number n than for positronium, where they decrease as 1/n2. Furthermore,
in quarkonium the first (1P ) and second (2P ) orbitals lie approximately halfway
between the S levels, in contrast to positronium, where S and P levels are nearly
degenerate. Thus a heavy qq system resembles roughly the 3-dimensional harmonic
oscillator [24] for which the potential levels are equidistant and equal to 3

2 h̄ω, 7
2 h̄ω,

9
2 h̄ω,. . . for � = 0), while the � = 1 orbitals lie in-between ( 5

2 h̄ω, 9
2 h̄ω, . . . , see

Fig. 15.2 in Sect. 15.1). A reasonable ansatz for the potential energy binding the qq
pair is therefore between 1/r (Coulomb potential) and r2 (harmonic potential). The
Cornell potential (energy) is of the form [25]

V (r) = −a
r

+ br, (9.1)

where the “constant” a is related to the strong coupling αs which decreases with
energy. A fit to the charmonium spectrum gave a = 0.52 and b = 0.925 GeV fm−1

[25]. The potential energy, expressed in GeV with (1.7), is then approximately given
by

V (r)[GeV] ∼ − 0.1

r[fm] + 0.9 r[fm]. (9.2)

The 1/r term, inspired by the 1/r Coulomb potential for photons, describes the
exchange of a spin-1 gluon and dominates at short distances. The second term
arises from the exchange of many gluons. The potential energy increases with r
and reproduces the quark confinement V (∞) = ∞. Translated into SI units the
force becomes b = 0.9 GeV fm−1 = 1.4 × 105 J m−1 = 1.4 × 105 N.
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Fig. 9.11 Left: light quark meson modelled as a gluon tube with the (nearly) massless quarks
rotating at the speed of light. Right: Chew-Frautschi plot of the Regge trajectories of the spin
triplet mesons (JPC = 1−−, 2++, 3−−, 4++, 5−−, 6++)

Let us briefly return to the light quarks. Assuming a separation of 1 fm gives a
potential energy of ∼800 MeV, which is the typical mass of ground state mesons
(such as the ρ). Hence the mass of light quark mesons is dominated by gluons. This
contrasts with heavy mesons for which the main contribution stems from the bare
masses of the c and b quarks. Naively, a qq pair could be viewed as consisting of a
rotating pair connected by a gluon tube of length 2R (Fig. 9.11). For light mesons
the quarks are almost massless and therefore rotate with nearly the speed of light.
The contribution of the gluons to the meson mass m at a distance r from the center
is dm = γ bdr = bdr/

√
1 − β2 with b ≈ 0.9 GeV fm−1 and β = r/R.

The mass m and the angular momentum � of the meson is then given by

m = 2
∫ R

0

bdr√
1 − β2

= πRb and � = 2
∫ R

0

r · βbdr√
1 − β2

= πR2b

2
. (9.3)

By eliminating R one finds that � = m2

2πb . By adding a constant which takes into
account (i) the spin of the pair (s = 0 or 1) and (ii) the (small) quark masses one
obtains the Regge trajectory j vs m2:

j = m2

2πb
+ const ⇒ j � 0.9m2[GeV2] + const , (9.4)
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Fig. 9.12 Left: a 6-jet event recorded by the LHC/CMS experiment at 7 TeV collision energy.
Right: a multijet event observed with the ATLAS detector at 13 TeV (image credits CMS and
ATLAS/CERN)

where we have expressed b in GeV2 by using the unit conversion (1.7). For example,
the Regge trajectory of the (u, d) spin triplet mesons (Fig. 9.11) is indeed linear with
a slope of 0.9 GeV−2. That of the φ mesons is displaced due to the larger s mass.

When r increases the excitation energy pair is stored in V (r) until the creation of
a new quark-antiquark pair from vacuum becomes more economical. The two pairs
then fly apart (and may in turn also split), leading to hadrons emitted within narrow
cones (a process called fragmentation or hadronization). The observation of such
jets at high collision energies (Fig. 9.12) is another direct evidence for the existence
of the quark substructure in hadrons.

Let us now estimate the average kinetic energies of the quarks and the interquark
distance. The virial theorem states that a bound system of N bodies has a total mean
kinetic energy given by

〈T 〉 = −1

2
〈
N∑
k=1

�Fk · �rk〉, (9.5)

where �Fk denotes the force acting on body k at the space coordinate �rk . For a two-
body system with separation distance r one gets

〈T 〉 = 1

2

〈
r
dV (r)

dr

〉
. (9.6)

For a power law V ∝ rn this becomes simply

〈T 〉 = n

2
〈V 〉. (9.7)
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Fig. 9.13 Quarkonium potential energy V as a function on interquark distance r for the power
law (9.1) (dotted curve) and logarithmic law (9.9) (straight line)

Hence for the Cornell potential (9.1) the quark-antiquark pair share the average total
kinetic energy

〈T 〉 = 1

2

(
a

〈r〉 + b〈r〉
)
, (9.8)

about 500 MeV for an average distance of 1 fm. An alternative potential which
reproduces (9.1) in the relevant range is that from Ref. [26] (Fig. 9.13),

V (r) = κ ln
r

r0
(9.9)

with κ = 0.733 GeV and r0 = 0.39 fm. The virial theorem (9.6) then gives the average
total kinetic energy

〈T 〉 = κ

2
= 365 MeV, (9.10)

independent of 〈r〉. The energy is shared between the quark and the antiquark
which can be treated non-relativistically. Hence the energy levels of charmonium
and bottomonium (and to a lesser extent strangeonium ss) can be predicted with the
potential V (r) by solving the Schrödinger equation. This has been performed for
various potentials such as (9.1) [25], (9.9) [26] or even with potentials of the form
A+Brν with ν = 0.104 [27]. The agreement with data is impressive for the ground
states, as Fig. 9.14 testifies, as well as for the fine and hyperfine structures that are
described in the next subsection. Relativistic effects have been taken into account in
[30]. For details on theoretical and experimental aspects on quarkonia we refer to
the homepage of the Quarkonium Working Group [31].
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Fig. 9.14 Left: predicted charmonium spectrum (boxes) compared with the available data (black
dots) [28]. Right: bottomonium spectrum (extracted from the predictions in Ref. [29])

Finally, let us estimate the interquark distance from the uncertainty relation:

〈r〉 · 〈p〉 = 〈r〉 ·√〈T 〉m � 1 (9.11)

with 〈T 〉 = 365 MeV leads to 〈r〉 = 0.15 fm for bb and 0.27 fm for cc, where we
have used the quark masses mb = 4.86 GeV and mc = 1.45 GeV from the potential
of Ref. [27].

9.4 Fine and Hyperfine Splitting

Let us now deal with the � > 0 orbitals, in particular the P levels, and start with
a general theorem on the ordering of the energy levels E(n, �) associated with
solutions of the Schrödinger equation. The quantum number n = 0, 1, 2, . . . is
the number of nodes of the wavefunction (the principal quantum number being
N = n+ �+ 1). It has been shown [32] that, for potential energies V (r) satisfying
the following conditions for all value of r > 0,

V (r) = 0 ⇒ E(n, �) = E(n− 1, �+ 1), (9.12)

V (r) < 0 ⇒ E(n, �) < E(n− 1, �+ 1), (9.13)

V (r) > 0 ⇒ E(n, �) > E(n− 1, �+ 1), (9.14)

where is the Laplace operator which, applied on spherically symmetric potentials
reads

V (r) = d2V

dr2 + 2

r

dV

dr
. (9.15)

For example, the potential energy of an electron in the Coulomb field satisfies
V (r) = −ρ(r)

ε0
(−e), where ρ(r) is the charge density (Poisson’s equation). For the
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Fig. 9.15 The non-central
tensor force acts between the
quark and antiquark magnetic
moments �μ1 and �μ2

hydrogen atom ρ(r) = 0, except in the proton (which is assumed here to be
point-like). Hence condition (9.12) predicts the degeneracy of the energy levels.
In alkaline atoms the single valence electron feels the negative charge of the inner
electrons, hence from (9.13) the P levels are predicted correctly to lie above the S
levels.

Returning to quarkonium, we find for the Cornell potential energy (9.1) that

V (r) = −2a

r3 + 2

r
· a
r2 + 2b

r
= 2b

r
> 0. (9.16)

The P states lie below the S states, which is verified experimentally, e.g. the χc0,1,2
(1P ) levels lie below theψ(2S). The same conclusion also applies to the logarithmic
potential (9.9) and to the 3-dimensional harmonic oscillator (Problem 9.1).

The level fine splitting is due to the interaction between the angular momentum
�L and the quark spins (LS coupling) and to the tensor interaction T between the
quark and antiquark magnetic moments (Fig. 9.15), while the hyperfine splitting
(ss) arises from the very short range interaction between the quark and antiquark
spins. With the Coulomb-like potential −a/r the treatment follows the same lines
as for the hydrogen atom, but the additional scalar term br in (9.1) is included to
take into account the long range confinement forces. This term contributes to theLS
coupling only [33].

The interaction Hamiltonian between two spin- 1
2 particles with equal masses m

is written as (see e.g. [33])

H = HLS +HT +Hss, (9.17)

where

HLS = − b

2m2r
[ �L · �S] + 2αs

m2r3 [ �L · �S],

HT = αs

3m2r3 [3(�σ1 · �n)(�σ2 · �n)− �σ1 · �σ2],

Hss = 8παs
9m2 [�σ1 · �σ2] δ3(�r), (9.18)

with the unit vector �n = �r
r
, �S = �s1 + �s2 and �σ1,2 = 2 �s1,2.
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These contributions have been derived in first order perturbation (Breit-Fermi
Hamiltonian), therefore large QCD corrections are expected since αs is large. The
level spacings decrease with quark mass. Let us now calculate the expectation values
of the operators (9.18) and absorb some of the constant terms and the unknown
radial distributions into proportionality constants:

ELS ∝ 〈�L · �S〉, (9.19)

ET ∝ 〈3(�σ1 · �n)(�σ2 · �n)− �σ1 · �σ2〉, (9.20)

Ess ∝ 1

m2 |ψ(0)|2, (9.21)

where ψ(0) is the wavefunction at r = 0, which vanishes for � > 0. Thus this term
contributes only to the � = 0 states. With

2〈 �L · �S〉 = 〈 �J 2 − �L 2 − �S 2〉 = [j (j + 1)− �(�+ 1)− s(s + 1)] (9.22)

one finds for � = s = 1

ELS ∝
⎛
⎝

−4
−2
+2

⎞
⎠ for j =

⎛
⎝

0
1
2

⎞
⎠ , (9.23)

while LS coupling does not contribute to � = 0 nor to spin singlet states. The tensor
force also vanishes for spin singlet states, since for �S = 0, �σ1 = –�σ2 and with (9.20)

(�σ1 · �n)2 = 1 , (�σ1)
2 = 3 ⇒ ET = 0. (9.24)

The expectation values of the operator (9.20) for spin triplet states are given by [34]

ET ∝
⎛
⎜⎝

−2(�+1)
2�−1

2
−2�
2�+3

⎞
⎟⎠ for j =

⎛
⎝
�− 1
�

�+ 1

⎞
⎠ , (9.25)

hence for P states

ET ∝
⎛
⎝

−4
2

− 2
5

⎞
⎠ for j =

⎛
⎝

0
1
2

⎞
⎠ . (9.26)

Table 9.2 shows the 13Pj mass splittings as a function of two proportionality
constants A and B, compared to the masses of the χcj (1P) levels. Since the spin
singlet hc(1P) does not experience any spin force, one expects its mass to lie at the
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Table 9.2 13PJ mass splittings in the charmonium sector, due to the LS coupling and the tensor
force T , compared with experimental data [4]

j LS T Mχcj [MeV]
0 −2A −4B 3414.7

1 −A 2B 3510.7

2 A − 2
5B 3556.2

center of gravity of the triplet states, where

5 ×
(
A− 2B

5

)
+ 3 × (−A+ 2B)+ 1 × (−2A− 4B) = 0, (9.27)

taking into account the spin multiplicities. The equation is fulfilled and the mass
differences reproduced with A = 35.0 MeV and B = 10.2 MeV. The predicted
hc(1P) mass is

M(cc̄) = 5M(χc2)+ 3M(χc1)+M(χc0)
9

= 3525.3 MeV, (9.28)

in impressive agreement with the measured value (3525.3 ± 0.2 MeV, Sect. 9.1).
The 2++ state is correctly predicted to be the least bound state.

Finally, let us show that the size of bottomonium is much smaller than that of
charmonium. Experimentally, the hyperfine splitting of the 1S level is 114 MeV for
charmonium (J/ψ(1S) – ηc(1S)) and 61 MeV for bottomonium (ϒ(1S) – ηb(1S))
[4]. From the contact interaction (9.21) one then estimates that

m2
b

m2
c

|ψ(0)|2ψ
|ψ(0)|2ϒ

∼ 2, (9.29)

where we assume αs in (9.18) to be equal (�0.5) for charmonium and bottomonium
[33]. Using the bare quark masses one then finds the ratio of overlap probabilities at
the origin

|ψ(0)|2ψ
|ψ(0)|2ϒ

∼ 0.17, (9.30)

which demonstrates that the bb mesons are much smaller than the cc ones.
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Chapter 10
Colour Charge

The interaction between quarks is mediated by eight gluons through the exchange
of a strong interaction colour charge. Quarks carry a colour charge which is a
conserved quantity. The underlying symmetry corresponding to the conservation
of colour is SU(3)c. The colour charge was introduced in 1965 by Han and Nambu
[1] as the source of the force between quarks, although the word itself had been
introduced shortly before by Greenberg [2]. The concept of coloured quarks and
gluons was further developed by many other authors, among them Bogolyubov et al.
[3] and Fritzsch et al. [4].

Before the introduction of colour the wavefunctions of the spin- 3
2 ground

state baryons with three equal flavours (++, − and �−) appeared to violate
the Pauli principle which requires the wavefunction of identical fermions to be
antisymmetric under permutations. For example, three identical fermions compose
the fully symmetric wavefunction

�− = |sss〉| ↑↑↑〉|L = 0〉, (10.1)

where L denotes the overall orbital angular momentum from the three quarks.
The introduction of a the new quantum number of colour solved the conundrum
and forms the basis of Quantum Chromodynamics (QCD): quarks exist in three
“colours”, say red R, green G, and blue B for each flavour. A baryon RGB baryon
is colourless (or colour neutral, the concept will be clarified below) and with the
quark flavours q1q2q3 consists of a superposition of the six permutations of colour.
Antisymmetry is restored by multiplying the flavour × spin × wavefunction by the
antisymmetric colour wavefunction

β(q1q2q3) = 1√
6
|q1(R)q2(G)q3(B)+ q1(B)q2(R)q3(G)+ q1(G)q2(B)q3(R)

−q1(G)q2(R)q3(B)− q1(B)q2(G)q3(R)− q1(R)q2(B)q3(G)〉.
(10.2)
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Fig. 10.1 The interaction
between quarks occurs by
exchanging coloured gluons.
The dashed lines show the
colour fluxes

For example, the colour wavefunction of the �− is the antisymmetric combination

β(�−) = 1√
6
|s(R)s(G)s(B) + s(B)s(R)s(G) + s(G)s(B)s(R)

−s(G)s(R)s(B) − s(B)s(G)s(R) − s(R)s(B)s(G)〉. (10.3)

Antiquarks also come in three “anticolours”, R, G, B (which we shall depict
below as cyan, pink and yellow). A meson is a linear superposition of quarks with
colours and antiquarks with the corresponding anticolours, so that the meson system
is colourless. For instance, the colour wavefunction of the π+ is given by

β(π+) = 1√
3
|u(R)d(R)+ u(G)d(G)+ u(B)d(B)〉. (10.4)

The interaction between quarks is mediated by gluons through the exchange of
colour, which is conserved (Fig. 10.1). A gluon therefore consists of one colour
and one anticolour. Nine gluons can be constructed from three colours and three
anticolours. To identify their colour wavefunctions we can use as templates the
SU(3)f wavefunctions in which we replace the u, d , and s flavours with the colours
R, G and B, see Table 5.1, and the isoscalar wavefunctions (7.27, 7.28). Seven
SU(3)c wavefunctions are readily obtained:

|RG〉, |GR〉, 1√
2
|GG− RR〉, |RB〉, |GB〉, |BG〉, |BR〉. (10.5)

To the two SU(3)f isoscalars correspond the octet

1√
6
|RR +GG− 2BB〉, (10.6)

and the singlet

1√
3
|RR +GG+ BB〉. (10.7)
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Fig. 10.2 (a) π0 decay into 2γ . The quark colours increase the amplitude of the triangular diagram
by a factor of 3; (b) the W+ boson decays into ud and cs with a probability of 2 × 3 (colour) ×
0.11 � 66%. The decays into e+νe, μ+νμ and τ+ντ account for the remaining 34%

Colour would increase the number of hadrons. Since there is e.g. only one
proton, only colourless hadrons appear in nature. Free quarks and free gluons are
not observed because quarks and gluons carry colour. However, the colourless
singlet (10.7) is not observed either. Therefore only the eight gluons with colour
wavefunctions (10.5) and (10.6) exist. The corresponding eight fields are the gauge
fields of QCD.

The existence of colour has been demonstrated experimentally. Let us review
three important experimental facts:

1. Without three colours the lifetime of the neutral pion would be a factor of 9
longer (see the decay diagram in Fig. 10.2a). The partial width for π0 − γ γ is
given by [5]

�γγ = α2m3

576π3(fπ/
√

2)2
N2 = 7.73 eV (10.8)

where α is the fine structure constant, m the π0 mass, fπ = 130.4 MeV the pion
decay constant and N = 3 quark colours. The present experimental accuracy at
the 2% level [6] (�γγ = 7.7 ± 0.2 eV) determines that N = 3 with very high
accuracy.

2. The W+ boson decays into hadrons with a measured branching ratio of about
66%, and into e+νe, μ+νμ and τ+ντ with branching ratios of about 11% each.
The hadronic decay is due to W+ → ud and cs (Fig. 10.2b), the decays into ub,
us, cd and cb being Cabibbo suppressed.

3. At sufficiently high energies quark-antiquark pairs (uu, dd, ss, cc and bb)
leading to hadrons and lepton pairs (e+e−, μ+μ− and τ+τ−) are produced in
e+e− collisions via the virtual annihilation photon. Figure 10.3 (left) shows
the annihilation cross section as a function of center-of-mass energy

√
s. The

production of the vector mesons is observed above the smooth non-resonant (nr)
background from e+e− → μ+μ−. Figure 10.3 (right) shows the ratio R of the
cross section for hadron production to that for non-resonant μ+μ− pairs. The
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Fig. 10.3 Left: measured cross section for e+e− annihilation into hadrons. Right: cross section
for e+e− annihilation into hadrons divided by the non-resonant cross section σ(e+e− → γ →
μ+μ−)nr = 4πα2(s)

3s . For N = 3 colours R = 11
3 [6]

ratio R is given by

R = σ(e+e− → hadrons)

σ (e+e− → μ+μ−)nr
= α2∑ q2

i

α2

[
1 + αs(Q)

π

]
=
∑
i

q2
i

[
1 + αs(Q)

π

]
,

(10.9)

where Q is the momentum transfer between initial and final states, α the fine
structure constant and αs the strong coupling. The numerator sums over the quark
charges qi . At sufficiently high energies all masses are negligible so that the
phase space factors cancel between numerator and denominator. Above the bb
threshold of about 10 GeV one finds, ignoring the small term in brackets and
assuming N quark colors,

R = N

[(
2

3

)2

+
(

−1

3

)2

+
(

−1

3

)2

+
(

2

3

)2

+
(

−1

3

)2
]

= 11

9
N,

(10.10)

which for N = 3 is in excellent agreement with measurements (Fig. 10.3, right).

Next, let us couple a coloured quark (of any flavour) to a coloured antiquark. We
have already done so for SU(3)f in (7.23), hence for SU(3)c

3c × 3∗
c = 1c + 8c. (10.11)

We note the occurrence of a colour singlet meson. Coupling two quarks gives

= 3c × 3c = 3∗
c + 6c (10.12)
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and therefore a two-quark system is not colour neutral so that hadrons made of two
quarks do not exist (the force between two quarks is repulsive). Let us now add a
third quark:

= 3c × 3c × 3c = 1c + 8c + 8c + 10c, (10.13)

which includes a colour singlet baryon. It is left to the reader to check that anticolour
singlet antibaryons qqq also exist.

The question now arises as to whether further quark configurations could also
build colour neutral “exotic” hadrons. Let us first couple two antiquarks:

= 3∗
c × 3∗

c = 3c + 6∗
c . (10.14)

A tetraquark combines two quarks and two antiquarks,

(q1q2)(q3q4) : (3∗
c + 6c)× (3c + 6∗

c )

= 3∗
c × 3c︸ ︷︷ ︸
1c+8c

+ 6c × 6∗
c︸ ︷︷ ︸

1c+8c+27c

+ 6c × 3c︸ ︷︷ ︸
8c+10c

+ 3∗
c × 6∗

c︸ ︷︷ ︸
8c+10∗

c

, (10.15)

(Problem 10.1). The 3∗
c ×3c and 6c×6∗

c decompositions both include a singlet. It is
interesting to note (Fig. 10.4) that the former (T-type) couples to baryon-antibaryon
pairs (such as pp) but not the latter (M-type). These tetraquark mesons are predicted
to exist and several candidates have been observed (Sect. 16.1).

The pentaquark (qqqqq configuration) is a baryon which includes a colour
singlet. Grouping the quarks sequentially one can construct a colour singlet:

q1q2 : 3c × 3c = 3∗
c + 6c,

q3q4 : 3c × 3c = 3∗
c + 6c,

(q1q2)(q3q4) : 3∗
c × 3∗

c = 3c + 6∗
c,

(q1q2q3q4)q : 3c × 3∗
c = 1c + 8c. (10.16)



124 10 Colour Charge

Fig. 10.4 The 3c × 3∗
c tetraquark (T-type) couples to a baryon-antibaryon pair (left) while for the

M-type (6∗
c × 6) the 3c × 6c coupling does not lead to a pair of colour neutral baryon-antibaryon

(right)

Fig. 10.5 Cartoons of a hybrid meson (left) in which the binding gluon is excited, and of a two-
gluon glueball (right) which does not contain any quark

Pentaquarks made of light quarks were reported some years ago but their existence
has been disputed. We shall return to pentaquarks in Sect. 16.3 and discuss the
evidence for a heavy pentaquark containing a cc pair that was reported at the LHC.

More complicated quark configurations are also possible, such as 3q3q (baryo-
nium), 6q , and 2q2q2q (dibaryon). Figure 10.5 (left) shows a hybrid meson (qqg)
in which the binding glue is excited. Candidates such as the π1(1600) have been
reported (Sect. 11.3). Since the gluons as gauge fields of QCD carry colour charge,
two or more gluons may exchange their colours to build a colour neutral hadron.
The prediction of such hadrons is a remarkable feature of QCD based on its non-
abelian structure, in contrast to the field quanta (the photons) of QED which do no
bind. Figure 10.5b shows the cartoon of a colourless bound state of two gluons,
the glueball. This hadron does not contain any quark but only the field quanta of
the strong interaction. Indeed the coupling of two SU(3)c colour octets contains a
colour singlet (Problem 10.2). QCD calculations on the lattice predict the lightest
glueball to be a scalar meson with mass between 1500 and 1800 MeV (see Fig. 11.1
below). The f0(1500) or f0(1710), which will be discussed in more detail in the
next section, have been proposed as candidates.

To complete this chapter let us illustrate the colour contents of some of these
states, composed here of the three light quarks only. The pairing of two flavours 3f
× 3f , say a red quark with a blue quark, decomposes into 3∗ + 6 representations
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Fig. 10.6 Colour configurations of the proton and various exotic hadrons with three light quarks,
see the text (adapted from [7])

of both SU(3)f and SU(3)c (row (a) in Fig. 10.6). For the proton in row (b),
made of red, blue and green quarks, the red and blue quarks are in a 3∗

c antigreen
configuration (which we depict as pink). The same reasoning applies to green-red
and blue-green couplings, the anticolours yellow and cyan, respectively, row (c).
The tetraquark, row (d), is either a compact colourless 2q̄2q hadron (e.g. antigreen
[pink] × green) or a qqqq molecule made of two mesons (e.g. green × antigreen
[pink] and red × antired [cyan]) loosely bound by pion exchange. Likewise, row (e)



126 10 Colour Charge

shows the pentaquark as an antigreen [pink], antired [cyan], and antiblue [yellow]
state and the 2q2q2q dibaryon with the same anticolour configuration.
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Chapter 11
Glueballs and Hybrid Mesons

A brief phenomenological review on the status of glueballs and hybrid mesons will
now be presented (tetraquarks will be dealt width in Chap. 16). Among the i = 0
scalar mesons at least two candidates, the f0(1500) and the f0(1710), dispute the
status of ground state glueballs. The first excited glueball state, expected to be a
tensor meson, has not been identified yet, although more tensor states have been
reported than can be accommodated in the 2++ qq nonets. There is evidence for
two isovector mesons, π1(1400) and π1(1600), with exotic quantum numbers 1−+
that are incompatible with qq states and which could be hybrid mesons or tetraquark
states.

11.1 Glueballs

Glueballs are isoscalar states that do not fit in qq nonets, either because their decay
modes are incompatible with qq states or because they are supernumerary. Their
production should be enhanced in gluon-rich channels such as central production in
high energy collisions (in which the incident projectiles are scattered under small
angles), radiative J/ψ(1S) decay into light quarks (which is mediated by gluon
exchanges), and pp annihilation. Glueballs should be suppressed in γ γ collisions
due to the absence of γ -gluon coupling.

The ground state glueball is predicted by lattice gauge theories to be a scalar
(0++) and the first excited state a tensor (2++). Figure 11.1 shows the predicted
mass spectrum [1]. The mass of the ground state is predicted to be 1700 MeV
(with an uncertainty of about 100 MeV). The first excited state has a mass of about
2400 MeV. The lightest glueball with exotic quantum numbers 2+− lies around
4200 MeV.
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Fig. 11.1 Predicted glueball
mass spectrum from lattice
QCD [1]

The low mass glueballs lie in the same mass region as ordinary isoscalar qq̄
states, that is for the ground state in the mass range of the 13P0(0++) mesons
and for the first excited state in the mass range of the 23P2, 33P2, 13F2(2++)
mesons. Therefore glueballs will mix with nearby qq̄ states of the same quantum
numbers. The i = 0 scalar mesons in the 1400–1700MeV range will mix with
the predicted pure ground state glueball to generate the observed physical states
f0(1370), f0(1500), and f0(1710) [2, 3]. The lattice calculations are made in the
quenched approximation that neglects virtual qq̄ pairs, hence mixing with scalar
mesons. However, first results including quark loops suggest that mass shifts are
small.

The classification of scalar mesons has been the subject of vivid discussions for
many years and is still controversial. However, the consensus is that there are too
many scalar mesons to fit in the ground state 0++ qq̄ nonet. Table 11.1 shows a
plausible classification scheme, among others that have been proposed (details and
references can be found in the Review of Particle Physics [4, 5]) The low mass
nonet is made of four-quark states (and/or meson-meson resonances). The ground
state 13P0(0++) qq nonet lies in the 1400 MeV region.

We shall argue below that f0(1500) contains a large fraction of glue and that
f0(1710) is dominantly ss. Let us deal first with the a0(980) and f0(980) mesons.
The a0(980) decays into ηπ and KK , the f0(980) into ππ and KK . This suggests
that their wavefunctions contain a significant fraction of ss pairs, which is not
possible for the qq isovector a0(980), but possible for a tetraquark (e.g. usds for the
a+

0 ). The mesons below 1 GeV have been interpreted as tetraquarks [6], to which we
shall return in more detail in Sect. 16.1.

Let us now discuss the isovector and isoscalar 13P0 states. The a0(1450)
decaying into ηπ has been discovered by the Crystal Barrel experiment (Sect. 3.2)
in pp annihilation with stopped antiprotons [7]. The π0π0η Dalitz plot is shown in
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Table 11.1 Tentative
classification of the scalar
mesons

� [MeV] i Structure

a0(980) ∼ 50 1 KK, qqq̄q̄

f0(980) ∼ 50 0 KK, qqq̄q̄

f0(500) ∼ 800 0 ππ, qqq̄ q̄

κ(700) ∼ 600 1
2 Kπ, qqq̄q̄

a0(1450) 265 1 ud̄, dū, dd̄ − uū
f0(1370) ∼ 400 0 dd̄ + uū
f0(1710) 125 0 ss̄

K∗
0 (1430) 294 1

2 us̄, ds̄, sū, sd̄

The resonances below 1 GeV would be
tetraquark states which recombine at large
distances to become meson-meson resonances.
In the ground state qq nonet (13P0, see
also Fig. 5.1) there are three isoscalar states,
f0(1370), f0(1710) and the additional f0(1500)
(not shown). According to [2, 3], the f0(1370)
and f0(1710) would be dominantly qq states
mixing with glue, while the f0(1500) would be
dominantly a glueball mixing with qq

Fig. 11.2. For unequal final state masses it is more convenient to use as independent
parameters the invariant masses squared, m2

12 vs. m2
13 (Appendix B). The event

distribution in the Dalitz plot deviates strongly from homogeneity, indicating the
presence of several interfering resonances. One observes the a0(980) and the
a2(1320) decaying to ηπ as well as the f0(980) decaying into ππ . Due to strong
interferences with these mesons the a0(1450), a 270 MeV broad state around
1450 MeV, is not directly visible, but is required by the fit. A general method to
determine spins from angular distribution will be described in Chap. 18.

The f0(1370) and f0(1500) mesons were established by Crystal Barrel in their
ηη and π0π0 decay modes [9]. Figure 11.3 shows the π0ηη and π0π0π0 Dalitz
plots for pp annihilation at rest. The ∼100 MeV broad f0(1500) is clearly seen,
together with other isoscalars decaying into π0π0 (recall that π0π0 has i = 0). For
the f0(1370), which is not directly visible, the fit requires a much broader width of
∼350 MeV.

Crystal Barrel also studied pp annihilation intoKLKLπ0 [10]. The angles of the
two KL were measured by the KL interaction in the CsI calorimeter. The goal was
to measure the decay branching ratios of the f0(1370) and f0(1500) into KK . The
Dalitz plot (Fig. 11.3, right), shows prominent contributions from the K∗ and the
(ss) f ′

2(1525), with no sign of the f0(1500). Neither f0(1370) nor f0(1500) have
a large coupling to KK [10] with the ratio of branching fractions KK/ππ � 1,
indicating that neither state can have a large ss component.

The f0(1370), f0(1500) and f0(1710), decaying to KK̄ and ππ , were also
reported by CERN’s WA102 experiment in pp central production at 450 GeV
[11]. The f0(1370) and f0(1500) appear to prefer ππ over KK decay. Hence
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Fig. 11.2 π0π0η Dalitz plot (2.8 × 105 events) in pp annihilation at rest into 6γ [7] (colour
picture from [8])

Fig. 11.3 π0ηη (2.0 × 105 events) and π0π0π0 Dalitz plots (7.1 × 105 events) in pp annihilation
at rest into 6γ ; π0KLKL Dalitz plot [10] (3.7 × 104 events) (colour pictures from [8])

the f0(1370) and f0(1500) do not have large ss̄ components, in agreement with
Crystal Barrel results. As far as the f0(1710) is concerned, WA102 reports thatKK̄
decay dominates ππ by a factor ∼5 [11], thus suggesting that this state must be
dominantly ss.
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Fig. 11.4 π0ηη Dalitz plot
with 900 MeV/c antiprotons
[12]

The proton having no constituent s quark, the OZI rule prevents the production
of ss mesons in pp annihilation. Since there is not enough phase space to produce
the f0(1710) in pp annihilation at rest, Crystal Barrel searched for the f0(1710)
with higher incident antiproton momenta. Figure 11.4, shows the Dalitz plot for
pp → π0ηη [12]. Since the f0(1710) → ηη is not observed, while f0(1500) is
clearly seen, this again suggests that the f0(1710) does not have a large (uu+ dd)
component.

11.1.1 SU(3) Coupling Coefficients

Before discussing the experimental evidence for the 0++ ground state glueball we
have to digress on decay amplitudes. Let us derive the expected decay branching
ratios of scalar (and tensor) mesons into two pseudoscalar mesons, ππ , KK, ηη
and ηη′. We shall limit ourselves to isoscalar (i = 0) decays which are relevant to
glueballs. (The amplitudes for i = 1 and i = 1

2 decays are listed in the appendix
of Ref. [2].) We denote the mostly ss isoscalar meson with f ′ and the mostly nn
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with f . For ideal mixing we have, copying from (5.9),

|f ′〉 = |f8〉
√

2

3
− |f1〉

√
1

3
= −|ss〉, (11.1)

|f 〉 = |f8〉
√

1

3
+ |f1〉

√
2

3
= 1√

2
|uu+ dd〉| ≡ |nn〉, (11.2)

where f8 is the octet and f1 the singlet contribution to the two isoscalar mesons.
We will first deal with the decay of these ideally mixed states and then treat the case
of arbitrary mixing angles. Provisionally, we shall assume exact SU(3) symmetry,
that is no penalty to produce ss pairs out of the vacuum, and set for the ratio of
amplitudes

ρ = γ (vacuum → ss)

γ (vacuum → uu)
= γ (vacuum → ss)

γ (vacuum → dd)
= 1, (11.3)

which is in reasonable agreement with data (ρ > 0.8) [13]. To describe the
couplings to the two pseudoscalar mesons we need the so-called SU(3) isoscalar
factors, which are the analogous of the Clebsch-Gordan coefficients in SU(2).
The ones needed here—for the multiplets 1 and 81—are listed in Fig. 11.5. They

Fig. 11.5 SU(3) coupling coefficients. The symbols represent the isospin, e.g. � stands for i = 1,
� and η for i = 0,  , K and N for i = 1

2 . The 81 factors are used for C = +1, the 82 ones for C
= –1 decays. KK: blue squares; ππ : red circles; two isoscalars: green triangles. A square-root is
implicitly assumed over the coefficient [14]
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describe—up to two unknown constants g1 and g8—the couplings 8 ×8 to singlet
and octet states, which are relevant to the decay of positive C parity states such
as 0++ and 2++. For the sake of completeness we also include the coefficients
82 relevant to the decay of negative parity states such as 1−−. Isoscalar factors
involving decuplets are needed for baryon decays and are listed in [14].

For example, coupling f8 to two pions involves 81 → 8 ×8, an i = 0 SU(3)
octet coupling to two isovectors, symbolized by a � coupling to �π in Fig. 11.5.

The coupling is equal to −g8

√
3
5 (red circle in Fig. 11.5). Coupling f1 to two kaons

involves 1 → 8 ×8, an isospin singlet coupling to two i = 1
2 states, symbolised by

a � coupling to NK . The coupling is equal to g1
2 (blue square in Fig. 11.5).

By using (11.1) and the couplings surrounded by the red circles in Fig. 11.5, one
finds the amplitude for f ′ → ππ :

γ (f ′ → ππ) =
√

2

3
γ (f8 → 8 × 8)−

√
1

3
γ (f1 → 8 × 8)

= −
√

2

3

√
3

5
g8 −

√
1

3

√
3

8
g1 = 0. (11.4)

The coupling vanishes because an ss state does not decay into two pions by virtue
of the OZI rule. Therefore g1 and g2 are related by

g1 = − 4√
5
g8 . (11.5)

On the other hand, the amplitude for f → ππ is given by

γ (f → ππ) =
√

1

3
γ (f8 → 8 × 8)+

√
2

3
γ (f1 → 8 × 8)

= −
√

1

3

√
3

5
g8 +

√
2

3

√
3

8
g1 = −g8

3√
5

(11.6)

with (11.5). Similarly, one obtains the amplitudes for f ′ and f toKK (blue squares
in Fig. 11.5):

γ (f ′ → KK) =
√

2

3

√
1

10
g8 −

√
1

3
· 1

2
g1 = g8

√
3

5
, (11.7)

γ (f → KK) =
√

1

3

√
1

10
g8 +

√
2

3
· 1

2
g1 = −g8

√
3

10
. (11.8)
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Table 11.2 Decay
amplitudes γ of the ideally
mixed isoscalar scalar (or
tensor) mesons (11.1)
and (11.2) up to a common
constant g8, where θ is the
pseudoscalar mixing angle

γ N

f → ππ − 3√
5

1

f → KK −
√

3
10 2

f → ηη 1√
15
(cos θ − √

2 sin θ)2 1

f → ηη′
√

2
15 (cos 2θ − sin 2θ

2
√

2
) 2

f ′ → ππ 0 –

f ′ → KK

√
3
5 2

f ′ → ηη −
√

2
15 (

√
2 cos θ + sin θ)2 1

f ′ → ηη′ 2√
15
(cos 2θ − sin 2θ

2
√

2
) 2

The partial widths are proportional to Nγ 2,
where N is a final state multiplicity factor

The amplitudes are summarised in Table 11.2. The partial width into ππ is
proportional to γ 2 and that into KK to (N = 2)γ 2 (since there are two kaon
doublets), multiplied by final state phase space and form factors, as described below.

The ηη and ηη′ final states are more complicated. Let us deal with the decay
f → ηη. According to (5.11) the two η mesons are superpositions of octet and
singlet states with pseudoscalar mixing angle θ :

|η〉 = |η8〉 cos θ − |η1〉 sin θ. (11.9)

Coupling f8 to ηη gives

γ (f8 → ηη) = γ (f8 → 8 × 8) cos2 θ − 2 γ (f8 → 1 × 8)︸ ︷︷ ︸
≡g18

sin θ cos θ, (11.10)

while for f1

γ (f1 → ηη) = γ (f1 → 8 × 8) cos2 θ + γ (f1 → 1 × 1)︸ ︷︷ ︸
g11

sin2 θ, (11.11)

noting that γ (f1 → 1 × 8) = γ (f8 → 1 × 1) = 0. The expressions (11.10), (11.11)
involve two new constants, g18 and g11. We will show below that

g18 = g11 =
√

2
5g8 . (11.12)
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Hence we get the f → ηη amplitude with the superposition (11.2), by coupling
an isoscalar to two isoscalar mesons (symbolised by a � coupling to �η, green
triangles in Fig. 11.5):

γ (f → ηη) =
√

1

3
(−
√

1

5
g8 cos2 θ − 2 g18︸︷︷︸√

2
5g8

sin θ cos θ)

+
√

2

3
(−
√

1

8
g1

︸ ︷︷ ︸√
2
5 g8

cos2 θ + g11︸︷︷︸√
2
5 g8

sin2 θ)

= g8

√
1

3

(
−
√

1

5
cos2 θ − 2

√
2

5
sin θ cos θ

)

+g8

√
2

3

(√
2

5
cos2 θ +

√
2

5
sin2 θ

)

= g8√
15
(cos2 θ − 2

√
2 sin θ cos θ + 2 sin2 θ)

= g8√
15
(cos θ − √

2 sin θ)2. (11.13)

The channels f ′ → ηη and f or f ′ → ηη′ can be treated similarly and are left to
the reader as exercises (Problem 11.1). The results are summarised in Table 11.2.

We are still left with the proof of (11.12) which follows from the OZI rule. An
isovector state a cannot decay into an ss meson. With

− |ss〉 = |8〉
√

2

3
− |1〉

√
1

3
(11.14)

the vanishing amplitude for e.g. a � |ss〉π reads

γ (a → |ss〉π) = −γ (a → 8 × 8)

√
2

3
+ γ (a → 1 × 8)

√
1

3
= 0. (11.15)

The 8 × 8 term describes the coupling of a pure isovector octet (symbolised by a
�) to an isoscalar octet and isovector octet (symbolised by�π). Hence

γ (a → |ss〉π) = −
√

1

5
g8

√
2

3
+ g18

√
1

3
= 0 ⇒ g18 =

√
2
5g8 . (11.16)
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On the other hand, since f is pure nn, f � |ss〉|ss〉. Using (11.2) and (11.14) one
gets the amplitude

γ (f → |ss〉|ss〉) = γ (f8 → 8 × 8)

√
1

3
· 2

3
− γ (f8 → 1 × 8) 2

√
1

3
·
√

1

3

√
2

3

+γ (f1 → 8 × 8)

√
2

3
· 2

3
+ γ (f1 → 1 × 1)

√
2

3
· 1

3
= 0,

(11.17)

therefore (green triangles in Fig. 11.5),

γ (f → |ss〉|ss〉) = −
√

1

5
g8

√
1

3
· 2

3
− g18

2

3

√
2

3

−
√

1

8
g1

√
2

3
· 2

3
+ g11

√
2

3
· 1

3
= 0. (11.18)

Inserting g1 (11.5) and g18 (11.16) leads to the advertised result

g11 =
√

2
5g8 . (11.19)

We have so far assumed that the decaying scalar meson is ideally mixed, either
f ′ (11.1) or f (11.2) with mixing angle ϕ = 35.3◦. For arbitrary mixing angle the
meson becomes a linear combination of f8 and f1. Let us redefine the mixing angle
as

α ≡ ϕ + 54.7◦ (11.20)

and write for the general case the superposition (5.11),

|fα〉 = |f8〉 cosϕ − |f1〉 sin ϕ = |f8〉 cos(α − 54.3◦)− |f1〉 sin(α − 54.3◦)

= |f8〉 cosα

√
1

3
+ |f8〉 sin α

√
2

3
− |f1〉 sin α

√
1

3
+ |f1〉 cosα

√
2

3
,

(11.21)

therefore

|fα〉 = |f 〉 cosα + |f ′〉 sin α . (11.22)

For α = 90◦ (ϕ = 35.3◦) one recovers the pure −|ss〉, and for α = 0◦ the pure
|nn〉 state. The decay couplings of the meson fα are then obtained with the help
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Table 11.3 Decay amplitudes γα of isoscalar scalar (or tensor) mesons up to a common arbitrary
constant

γα n γα (φ = 45◦, ρ = 1)

fα → ππ cos α N× 3 = 3 cos α

fα → KK 1
2 cos α(ρ − √

2 tanα) N× 2 = 4 1
2 cos α(1 − √

2 tanα)

fα → ηη − cos α(cos2 φ − ρ√2 tanα sin2 φ) 1 − 1
2 cosα(1 − √

2 tanα)

fα → ηη′ − cos α cos φ sinφ(1 + ρ√2 tanα) 2 − 1
2 cosα(1 + √

2 tanα)

The amplitudes for ρ = 1 and pseudoscalar mixing angle θ � –10◦ are listed in the last column.
The partial widths are proportional to nγ 2

α , where n is the final state multiplicity factor. The
amplitudes have been normalised to cos α by multiplying with −√

5/3. The multiplicity factors
from Table 11.2 have been updated accordingly

of Table 11.2. However, the expressions become more transparent when rewriting
Table 11.2 as a function of the pseudoscalar mixing angle also expressed as

φ ≡ θ + 54.7◦. (11.23)

Substituting θ for φ one finds, after a few lines of tedious algebra, the much simpler
form

γ (f → ηη) = 3√
15

cos2 φ. (11.24)

Table 11.3 lists the decay amplitudes as a function of α and φ. We have also taken
into account the ρ factor (11.3) which has been inserted whenever an ss pair has
to be created from vacuum. For KK decay ρ contributes to the first term (nn). For
ηη and ηη′ the second terms arise from the two outgoing ss pairs, one of which is
generated from vacuum. With the assumption that θ ∼ –10◦ (Sect. 5.2)—hence for
φ ∼ 45◦—the amplitudes reduce to the simpler forms shown in the last column of
Table 11.3.

Figure 11.6 illustrates how nγ 2
α varies with mixing angle α when assuming a

pseudoscalar mixing angle θ = –17.3◦ [15] and ρ = 1. Ratios between partial widths
are obtained by taking into account the final state phase space factorW :

� = constant × nγ 2
α ×W, (11.25)

with W = pF 2
� (p) (7.56). To compare with data Ref. [2] uses the following

prescription:

W = p2l+1e
− p2

8β2 , (11.26)

with β = 0.5 GeV/c, which also leads to excellent agreement between prediction
and data for tensor decays (� = 2) into pseudoscalar pairs [2]. We recall that p
is the break-up momentum in the decay rest frame in GeV/c and � the relative
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Fig. 11.6 SU(3) predictions for isoscalar qq scalar (or tensor) mesons decaying into pseudoscalar
pairs, assuming θ = –17.3◦ and ρ = 1 [14]

angular momentum (� = 0 for scalar decays). The exponential form factor in (11.26)
reduces the partial width for large momenta (thus counteracting the phase space) and
is comparable to the damping factor in Table 7.3.

11.1.2 Two-Body Decays of Scalar Mesons

Among the three isoscalar 0++ states in the 1500 MeV region—the f0(1710),
f0(1500) and f0(1370)—the quark content of the f0(1370) is the least problematic.
This very broad (∼300–600 MeV) state is required in the ππ scattering amplitude
[16] with a small branching ratio into KK . It also decays strongly into 4π [14].
When interpreted as qq the consensus for this meson is to be an nn state.

Let us now examine the decay rates of the f0(1500) and f0(1710). Figure 11.7
shows a 2-dimensional plot of the expected ratios of couplings

R2 = 4γ 2(KK)

3γ 2(ππ)
vs. R1 = γ 2(ηη)

3γ 2(ππ)
(11.27)

as a function of scalar mixing angle α, calculated from Table 11.3 with θ =
−17.3◦ and ρ = 1 (Fig. 11.6). The measured values from Crystal Barrel [16]
and from WA102 [18] in high energy central collisions are shown by the coloured
boxes, those from Crystal Barrel in red and those from WA102 in blue. The
experimental branching ratios have been corrected for phase space following the
prescription (11.26). One sees that f0(1710) decays preferably into KK pairs with
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Fig. 11.7 Ratio R2 vs. R1 of squared couplings (11.27). The curve shows the prediction for qq
mesons as a function of mixing angle α (in degrees). The boxes are data from pp annihilation at
rest (Crystal Barrel, CB) and high energy proton-proton central collisions (WA). The green dashed
line shows the expected glueball couplings for a pseudoscalar mixing angle of θ = –17.3◦ [17]

α large and not far from 90◦, while f0(1500) prefers α �0. When interpreted as qq
the former would be mostly ss and the latter mostly nn.

However, with the f0(1370) there is no room for the f0(1500) as nn state.
Furthermore, the f0(1710) → KK has been observed by Belle in γ γ collisions
[19], while the f0(1500) was not seen, thus confirming earlier findings from LEP
(for more details see [4]). A glueball should be suppressed in γ γ collisions, since
photons do not couple directly to gluons. These simple tentative arguments suggest
that f0(1500) could be the ground state glueball.

Let us now derive the predictions for glueball decay into two pseudoscalar
mesons. Pure glueballs G decaying equally into uu, dd and ss are flavour singlets
(ρ = 1). By choosing

cosα =
√

2

3
and sinα = −

√
1

3
(11.28)

(or α = −35.3◦) one gets from (11.22) the flavour singlet

|G〉 = 1√
3
|uu+ dd + ss〉. (11.29)
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Fig. 11.8 Decay in first order perturbation of a qq meson (a), mixing of a glueball G0 with qq
(b) and G0 decay into two glueballs (c)

Table 11.3 then gives with the approximation φ = 45◦ and exact SU(3)f (ρ = 1) the
couplings γ 2 = 1 for ππ , KK, ηη and γ 2 = 0 for ηη′, leading to the ratios between
glueball decay rates

G → ππ : KK : ηη : ηη′ = 3 : 4 : 1 : 0 (11.30)

apart from phase space factors. Note that the glueball coupling to ηη depends on
φ and ρ, and the coupling to ηη′ always vanishes for ρ = 1. Figure 11.7 shows
the couplings of f0(1500) to KK and ηη relative to ππ (dashed lines). The ratio
γ 2(ηη)/γ 2(ππ) is consistent with that expected for a glueball, but theKK channel
is suppressed by an order of magnitude.1

A scenario to accommodate three isoscalar 0++ states in the 1500 MeV region
was first proposed in [2, 21]. In the flux tube model mesons are qq pairs connected
by a coloured tube of gluons and glueballs are made of gluon loops (cartooned
in Fig. 10.5). In first order perturbation a qq meson decays into ππ and KK
(Fig. 11.8a), but a glueball G0 does not decay directly into qq. Instead, G0 mixes
with nearby qq mesons of the same quantum numbers, which then decay into meson
pairs (Fig. 11.8b). However,G0 may decay directly into two glueballs which couple
to the glue content of two isoscalar mesons, such as the η and η′ (Fig. 11.8c).2

In first order perturbation and under the assumption that the couplings of G0 to
nn and ss in Fig. 11.8b are equal, the pure glueballG0 mixes with an nn stateN and
an ss state S to produce the observed mesonG. Apart from an overall normalisation
constant let us make the ansatz

|G〉 = |G0〉 + ξ(√2|nn〉 + ω|ss〉) (11.31)

1The decay f0(1500) → ηη′, which occurs at the kinematical threshold, has been observed with
the small branching ratio fηη′ = (1.9±0.8)% � fππ = (34.9 ± 2.3)% [14, 20].
2The η and η′ may have small gluonic components in their wavefunctions, but present data are
consistent with a vanishing gluonic contribution. However, the errors are large: < 10% for the η
and 29+18

−26% for the η′ [22].
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[2], where ξ is a mixing parameter and

ω ≡ m(G0)−m(N)
m(G0)−m(S) . (11.32)

Likewise the wavefunctions of the other two states are given by

|N〉 − ξ√2|G0〉 and |S〉 − ξω|G0〉, (11.33)

apart from normalisation constants. For the special case m(G0) = m(N) = m(S),
hence ω = 1,G decay becomes the flavour singlet (11.29), assuming that the G0
component contributes negligibly. We will now show that for ω = −1, that is when
G0 lies halfway between S and N , the interference between N and S decay is fully
destructive and the decay intoKK vanishes. We have seen that the wavefunction of
a qq meson fα is given by the superposition (11.22)

|fα〉 = cosα|nn〉 − sin α|ss〉, (11.34)

leading with Table 11.3 to the ratio

γ (qq → KK)

γ (qq → ππ)
= 1

2
(1 − √

2 tanα). (11.35)

Comparing (11.34) with the bracketed term in (11.31) we make the substitution

− sin α → ω and cosα → √
2 hence tan α → − ω√

2
(11.36)

in (11.35) to obtain

γ (G→ KK)

γ (G→ ππ)
= 1 + ω

2
, (11.37)

which proves that the decay amplitude into KK vanishes for ω = –1.
The classification of the 13P0 nonet shown in Table 11.1, and in particular the

small KK branching ratio, can be accommodated in this scenario by Crystal Barrel
and WA102, with the f0(1370) and f0(1710) being made essentially of N and S
components with a small admixture of glue, while the f0(1500) is mostly glue with
about ξ2 ∼20% of qq admixture [2]. The analysis was repeated later, this time
by including results from central production, and led to similar conclusions [3].
Figure 11.9 shows the distribution of glue among the three pseudoscalars, derived
from central collisions and J/ψ decay data, J/ψ → ωKK,ωππ and J/ψ →
φKK,φππ collected at the Beijing e+e− collider.

Alternative schemes to the one discussed here have been proposed so that the
classification presented in Table 11.1 remains controversial. In [24] and [25] the
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Fig. 11.9 Distribution of glue (G0), ss (S) and nn (N) pairs in the f0(1710), f0(1500) and
f0(1370) wavefunctions from central collisions and J/ψ decay (extracted from the analysis [23])

f01710) is considered a better candidate for the ground state glueball. A lighter
glueball around or below 1 GeV has also been advocated [26]. Details and references
can be obtained by consulting the articles on “Non-qq mesons” [4] and the “Note
on scalar mesons below 2 GeV” [5] in the Review of Particle Physics. Lattice
calculations may ultimately shed light on the true nature of the scalar mesons.

11.2 Tensor Mesons

The mass of the first excited glueball (2++) is predicted around 2400 MeV
(Fig. 11.1). Let us therefore briefly review the known isoscalar tensor sector. The
ideally mixed 13P2 qq mesons, f2(1270) and f ′

2(1525), are well known. Above
1525 MeV and below 2500 MeV eight isoscalar mesons have been reported, while
six are expected to belong to the 23P2, 33P2, and 13F2 nonets. Figure 11.10 shows
that these states are broad and therefore interfere, which makes the identification of
the tensor glueball rather difficult. None of these mesons can be definitively assigned
to these nonets (in Fig. 5.1 we have assigned the f2(1640) and the 470 MeV broad
f2(1950), which has been observed by several experiments, to the 23P2 nonet).

The reaction pp → φφ is OZI suppressed but may proceed through the emission
of glueballs. The cross section for φφ production in pp annihilation rises sharply
towards very large values [27], which could signal the presence of the tensor
glueball, in accord with the observation of several structures in π−p → nφφ

reactions [28] and pp → ppφφ central production [29].
The nature of the f2(1565) has remained a mystery. This meson was first reported

by the ASTERIX experiment at LEAR in pp annihilation at rest into π+π−π0

in gaseous hydrogen at NTP [30]. The Dalitz plot and the π+π− invariant mass
projection are displayed in Fig. 11.11. The f2(1565) state is mainly produced from
the antiprotonic P states (3P1 and 3P2), which are enhanced in low pressure
hydrogen, as was explained in the caption of Fig. 2.7. This presumably explains
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Fig. 11.10 The tensor mesons that have been observed so far, normalized to unit area. The
f2(1270) and f ′

2(1525) (arrows) are firmly established as the ground state nn and ss tensor mesons,
respectively. The quantum numbers of the narrow state at 2220 MeV are not well established

Fig. 11.11 Left: π+π−π0 Dalitz plot in pp annihilation at rest in gaseous hydrogen. Right:
π+π− invariant mass projection. The curve shows the Dalitz plot fit (adapted from [31])

why it had not been spotted earlier in liquid hydrogen, e.g. in bubble chamber
experiments.

The f2(1565) seems to be produced only in pp annihilation [31, 32]. In contrast
to the pp interaction, repulsive at very short distances owing to the Pauli principle,
the pp interaction is predicted to become attractive in some of the partial waves,
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leading to the existence of quasi-nuclear bound states. Most of these “baryonium”
states cluster just below the 2mp threshold, but a sequence of 0++, 1−−, 2++
isoscalar states bound by several 100 MeV have been predicted (for a review see
[33]). Experimentally, these baryonia have remained elusive, perhaps due to the
onset of annihilation at short distances which increases their widths substantially.
The f2(1565) could be such a nucleon-antinucleon bound state, generated from
protonium by shaking off the neutral pion.

11.3 JPC = 1−+ Mesons

We have seen in Sect. 4 that mesons with quantum numbers JPC = 1−+ cannot
be quark-antiquark states. A ∼350 MeV broad state called π1(1400), decaying
into ηπ , was reported in several experiments using high energy pions. Its � = 1
amplitude interferes with the a2(1320) → ηπ (� = 2) amplitude, leading to a
forward/backward asymmetry in the ηπ angular distribution. The state was reported
e.g. at BNL with 18 GeV pions in the reaction π−p → ηπ0n [34].

The π1(1400) was also observed by Crystal Barrel using liquid deuterium in the
annihilation pn → π−π0η associated with a very slow spectator proton [35]. The
π−π0η Dalitz plot is shown in Fig. 11.12. The signal appears as an excess of events
above the ρ band in the vicinity of the a2(1320) signals. The π1(1400) interfering
with the a2(1320) and ρ is required by the fit. The mass is 1400 ± 28 MeV (slightly
higher than the BNL value [34]) and the width 310 ± 70 MeV.

The π1(1600) is another 1−+ state reported in π−N (diffractive) interaction,
decaying into ρπ , b1(1235)π and f1(1285)π , but not ηπ . For example, a clear
ρ0π− signal is observed by the COMPASS experiment at CERN in the reaction
π−Pb → π+π−π−X with 190 GeV pions. [36].

Fig. 11.12 Dalitz plot of pn
annihilation into π−π0η [35]
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Hybrid mesons are qq mesons with a vibrating gluon flux tube (Fig. 10.5). They
can be isoscalar or isovector states with exotic quantum numbers. In the flux tube
model ground state hybrids with quantum numbers (0−+, 1−+, 1−−, and 2−+) are
expected between 1.7 and 1.9 GeV [37, 38]. Lattice calculations also predict the
ground state hybrid at a mass of 1.9 GeV [39]. Most of them should be rather broad,
but some can be as narrow as 100 MeV. The π1(1400) is much lighter, while the
π1(1600) mass does not lie far below the predicted values. Hence the former is
unlikely to be a hybrid meson, while the latter behaves like a hybrid state, decaying
into a pair of P and S mesons (b1(1235)π and f1(1285)π).

Clearly the search for hybrid mesons is still in its infancy. Ultimately, other
members of the hybrid nonets need to be identified. Progress will be hopefully
achieved with new facilities, such as GlueX at Jefferson Laboratory which will
photoproduce mesons off nucleons with linearly polarized photons. Details on
hybrid mesons can be found in [4] and in the comprehensive review [40].
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Chapter 12
Resonance Analysis

The mass dependence of a resonance with nominal mass m0 and total width �,
decaying into the final state |f 〉, for example |π+π−〉, is usually described by the
non-relativistic Breit-Wigner amplitude

T (m) ∝ 1

m0 −m− i�/2 , (12.1)

leading to the mass distribution

|T (m)|2dm ∝ dm

(m0 −m)2 + �2/4
. (12.2)

However, for broad overlapping and interfering resonances the prescription (12.1)
fails. Interference effects occur when various decay modes from the initial state |i〉
lead to the same final state |f 〉 (even when the decay modes involve intermediate
resonances with different quantum numbers). An example of interferences between
the 2++ a2, the 1−− ρ and the 1−+ π1(1400) was mentioned earlier (Fig. 11.12).
Distortions also appear in the mass spectrum due to kinematical thresholds in
other channels. An example will be discussed below in the context of the a0(980)
decaying into ηπ and KK.

The K-matrix formalism is better suited when dealing with resonance inter-
ference and multiple decay modes [1]. Consider for example the four scattering
reactions

(
π+π− → π+π− π+π− → K+K−
K+K− → π+π− K+K− → K+K−

)
. (12.3)

through one or more intermediate resonances α, for example by scattering a pion or
a kaon off a target nucleon (Fig. 12.1).
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Fig. 12.1 ππ or KK
scattering through
intermediate resonances α

The transition amplitude T for a given partial wave � is described by the 2 × 2
T -matrix

T = (1 − iKρ)−1K (12.4)

whereK is the real and symmetric 2 × 2 matrix

Kij (m) =
∑
α

γαi γαjmα�
′
α

m2
α −m2 Bαi (m)Bαj (m), (12.5)

(i or j = 1 for π+π−, 2 for K+K−). The sum runs over all resonances with K-
matrix poles mα . The 2 × 2 diagonal matrix ρ(m) in (12.4), defined as

ρ1(m) ≡ ρ11 = 2pπ/m and ρ2(m) ≡ ρ22 = 2pK/m, (12.6)

takes into account the two-body phase space. For massesm belowKK threshold ρ2
is imaginary and for large masses ρi � 1. The factors Bαi are ratios of the damping
factors listed in Table 7.3:

Bαi (m) = F�(pi)

F�(pαi )
. (12.7)

The decay angular momentum is �, p1 is the pion momentum, p2 the kaon
momentum, and pαi the corresponding momenta at the massm = mα . The coupling
constants of the resonances γα1 to ππ and γα2 toKK are real and fulfil the condition

γ 2
α1

+ γ 2
α2

= 1, (12.8)

since we have assumed that the resonances have no further decay channels. For the
sake of clarity and ease of notation we shall ignore the damping factors (12.7) in the
following. This is correct e.g. when dealing with the decay of scalar mesons with �
= 0. The K-matrix becomes simply

Kij (m) =
∑
α

γαi γαjmα�
′
α

m2
α −m2

. (12.9)
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The parameter �′
α is related to the partial width �αi for decay into channel i:

�αi (mα) = γ 2
αi
�′
αρi(mα). (12.10)

The total resonance width is given by

�α =
2∑
i=1

�αi . (12.11)

Let us consider the simple case of a single resonance with mass m0 and width �
decaying into one channel only. Then �′

0 = �
ρ(m0)

and

K = m0�
′
0

m2
0 −m2

. (12.12)

Thus (12.4) gives

T (m) =
m0�

′
0

m2
0−m2

1 − i m0�
′
0

m2
0−m2 ρ(m)

=
m0�
ρ(m0)

m2
0 −m2 − im0�(m)

, (12.13)

the relativistic version of the Breit-Wigner amplitude with

�(m) ≡ �
ρ(m)

ρ(m0)
. (12.14)

For a narrow resonance far above decay threshold one gets with the approximation

m2
0 −m2 = (m0 +m)(m0 −m) � 2m0(m0 −m) (12.15)

and

p0 � p � m0

2
⇒ ρ(m) � ρ(m0) � 1 (12.16)

the familiar non-relativistic Breit-Wigner amplitude (12.1)

T (m) = �/2

m0 −m− i�/2 . (12.17)

The mass and width of a resonance is defined as the pole of T , which lies at

mP = m0 − i �
2

(12.18)
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in the complex plane and m0 coincides with the pole of the K-matrix. However, for
overlapping resonances the poles mα of the K-matrix do not coincide with those of
the T -matrix.

Figure 12.1 and matrix (12.4) deal with the formation of resonances in scattering
experiments ab → α → cd . Consider now the production of resonances in
reactions associated with a recoiling system ab → αX, α → cd , such as pp → αX

or pp → αX. In the isobar model the resonance is assumed not to interact with the
recoiling system X. The T -matrix is replaced by the vector [2]

T = (1 − iKρ)−1P , (12.19)

where the vector P is defined as

Pi(m) =
∑
α

βαγαimα�
′
αBαi (m)

m2
α −m2 . (12.20)

The coupling strength to the initial state is described by the complex number βα
while γαi denotes as before the resonance coupling to channel i. A resonance is
characterized by its complex pole position.

By comparing with (12.9) and copying from (12.13) one finds the relativistic
Breit-Wigner amplitude of a single scalar resonance feeding one decay channel,

T (m) = βm0�/ρ(m0)

m2
0 −m2 − im0�(m)

(12.21)

with (complex) coupling strength β, and where we have again dropped the ratio of
damping factors (12.7) for � = 0.

Let us now consider the production of a series of resonances with the same
quantum numbers and two different decay modes, and construct the vector T . With

Kρ =
(
K11 K12

K12 K22

)(
ρ1 0
0 ρ2

)
=
(
K11ρ1 K12ρ2

K12ρ1 K22ρ2

)
(12.22)

and

(1 − iKρ) =
(

1 − iK11ρ1 −iK12ρ2

−iK12ρ1 1 − iK22ρ2

)
, (12.23)

one gets

(1 − iKρ)−1 =
(

1 − iK22ρ2 iK12ρ2

iK12ρ1 1 − iK11ρ2

)
1

δ
(12.24)
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with

δ ≡ (1 − iK11ρ1)(1 − iK22ρ2)+K2
12ρ1ρ2 = 1 − ρ1ρ2D − i(ρ1K11 + ρ2K22)

(12.25)

and

D ≡ K11K22 −K2
12. (12.26)

The amplitude to observe the final state |1〉 is given by (12.19):

T1 = (1 − iK22ρ2)P1 + iK12ρ2P2

1 − ρ1ρ2D − i(ρ1K11 + ρ2K22)
. (12.27)

Consider for example the production of a single resonance, say a0(980)0 with
massm0, decaying into ηπ0 andKK, hence � = 0 andD = 0 (γ 2

1 γ
2
2 −[γ1γ2]2 = 0).

One obtains for the amplitude to decay into ηπ0 (Problem 12.1),

T1 = T (ηπ0) = bg1

m2
0 −m2 − i(ρ1g

2
1 + ρ2g

2
2)
, (12.28)

where we have defined

g1 ≡ γ1

√
m0�

′
0, g2 ≡ γ2

√
m0�

′
0, b ≡ β

√
m0�

′
0, (12.29)

hence

g2
1 + g2

2 = m0�
′
0. (12.30)

Formula (12.28) is the Flatté coupled channel amplitude [3], where g1 and g2
represent the coupling strengths to ηπ0 and KK, respectively, and b the a0(980)
production amplitude. The amplitude T2 to decay into KK is obtained by swapping
the labels 1 and 2. The phase space factors are given by

ρ1(m) = 2pη
m

=
√√√√
[

1 −
(
mπ +mη

m

)2
][

1 −
(
mπ −mη

m

)2
]

(12.31)

and

ρ2(m) = 2pK
m

=
√

1 − 4m2
K

m2
, (12.32)

where pη = pπ and pK are the momenta in the a0(980) rest frame.
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Fig. 12.2 Left: predicted ηπ and KK mass distributions (in arbitrary units, full red curves) for
a0(980) resonance production in pp annihilation into a0K , according to the Flatté formalism with
g1 = 324 MeV, g2 = 329 MeV (�′

0 = 462 MeV). The observed width is about 54 MeV. The dashed
blue line shows the ηπ mass distribution for the same width �′

0 in the absence of KK decay
(g2 = 0). The observed width increases to 300 MeV. Right: the a0(980) → ηπ0 resonance in
proton-antiproton annihilation at rest into ηηπ0 [4]

The threshold for the running massm ismπ0 +mη = 680 MeV above which ρ1 ≥
0. BelowKK threshold (m ≤ 990 MeV) ρ2 is imaginary. This leads to a shift of the
resonance peak and to a narrower and asymmetric distribution in the ηπ channel, as
is immediately seen from (12.28). Figure 12.2 (left) illustrates the result for realistic
values of g1 and g2. The observed resonance width is about 54 MeV. Also shown
is the expected distribution when turning the KK channel off. Figure 12.2 (right)
shows the a0(980) produced in the annihilation channel ηηπ0 [4].

The Dalitz plots for π0π0η, π0ηη and π0π0π0 in proton-antiproton annihilation
have been discussed before (Figs. 11.2 and 11.3). As a further example of the K-
matrix application, Fig. 12.3 shows the π0π0 and ηη mass distributions obtained
from a coupled channel analysis using a 3 × 3 K-matrix for the production and
decay of the resonances into π0π0, ηη and KK , which illustrates the interference
between four isoscalar 0++ mesons [5]. The f0(980) → π0π0 appears as a dip in
π0π0π0 and as a peak in π0π0η. This shows that a resonance does not necessarily
appear as a peak in the invariant mass spectrum.

Conversely, not every peak can be attributed to a resonance, but could be
generated by the presence of thresholds or by triangle singularities. A well-known
example of threshold cusp is in the decay K+ → π+π0π0. The π0π0 mass
distribution exhibits a shoulder at m2 = 4m2

π± = 0.076 GeV2 (Fig. 12.4a) due
to the opening of the decay channel K+ → π+π+π−. Above 2mπ± threshold the
two charged pions can rescatter into two neutral pions. This process interferes with
the direct π0π0 decay and generates a distortion (cusp) in the mass spectrum.

Triangle singularities are kinematical effects associated with three collinear
particles (Fig. 12.4b). Particle A decays into B and C, which in turn decays into D
and E. Particle D can fly in the opposite direction to C and, if kinematics permits,
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Fig. 12.3 π0π0 and ηηmass distributions (in arbitrary units). Full red curve: π0π0π0; dotted blue
curve: π0π0η; dashed green curve π0ηη (compiled from [5])

Fig. 12.4 (a) m2(π0π0) distribution in K+ → π+π0π0 decay with a cusp (arrow) at the π+π−
threshold [6]; (b) triangle diagram in which particleD catches up and interacts withB; (c) example
of a state A decaying into K∗K̄ and 3π through triangular rescattering

eventually catch up and interact with B. This mechanism generates fake peaks in
the final state and has been proposed as alternative explanations for several meson
and baryon signals (see e.g. [7]). An example is shown in Fig. 12.4c: the state A
decays into K̄K∗ → K̄Kπ and by final state rescattering also into 3π . For a broad
A two peaks can appear at different masses in the two final states. This mechanism
has been proposed to interpret the close lying a1(1260) → K∗(→ Kπ)K̄ and
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a1(1420) → f0(980)(→ ππ)π [8] or the η(1475) → K∗(→ Kπ)K̄ and
η(1410)→ a0(980)(→ ηπ)π as manifestations of the same states [9].
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Chapter 13
Baryons

Baryons are made of three quarks. The charge conjugated partners are the
antibaryons which consist of the three corresponding antiquarks. However,
candidates for pentaquark baryons made of four quarks and one antiquark have
been reported (Sect. 16.3). Let us first deal with the ordinary ones made of qqq
or qqq. Baryons have the baryon number B = 1 and antibaryons B = −1. Those
containing only light (u and d) quarks are calledN for isospin i = 1

2 and for i = 3
2

(the proton and neutron are usually abbreviated to p and n). Hyperons are baryons
containing at least one s quark. Baryons with two light quarks are labelled � for
i = 0 and � for i = 1. Those containing only one light quark are called  and
are isospin doublets. Those without any light quark are called � and are isospin
singlets. The number of c or b quarks in a baryon is indicated by the subscripts c or
b. The mass in MeV is specified in parentheses, except for the long-lived (“stable”)
ones which decay through the weak interaction.

For example, the JP = 1
2
+
N(1440) (also known as Roper resonance) is the first

radial excitation of the nucleon, decaying into nπ(π) or pπ(π). The 3
2
+
 b(5950)0

is a usb state decaying (strongly) into  −
b π

+, the JP = 1
2
+
 ++
cc at a mass of

3621 MeV a ucc state decaying (weakly) into �+
c [udc]K−π+π+, the �c(3000)0

an excited ssc baryon decaying (strongly) into  +
c [usc]K−, see also Problem 13.1.

We shall return to some of these states in Chap. 17 on heavy baryons.
By convention (Sect. 2.1) the quark has positive internal parity, hence the

antiquarks negative internal parity. Following (2.5) the parity is given by

P(qqq) = (−1)�ρ (−1)�λ (13.1)

for baryons, and

P(qqq) = −(−1)�ρ (−1)�λ (13.2)
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Fig. 13.1 Angular momenta
�ρ and �λ in a qqq baryon

for antibaryons, where �ρ is the angular momentum of one qq (diquark) pair and
�λ the angular momentum between the diquark and the third quark (Fig. 13.1). Thus
ground state baryons have �ρ = �λ = 0, and hence the quantum numbers JP = 1

2
+

or
3
2
+

, while the corresponding antibaryons have the opposite parities. When adding
angular momentum larger spins ( 5

2 , 7
2 , . . . ) become possible. The C and G parities

are not defined.

13.1 Ground State Light Baryons

Let us deal first with baryons made of u, d , and s quarks. We have seen in Chap. 10
on SU(3)c that coupling three coloured quarks leads to the decomposition (10.13).
This can be applied to flavour symmetry SU(3)f as well:

3 × 3 × 3 = 1 + 8 + 8 + 10. (13.3)

Thus one expects a flavour singlet, two flavour octets and one flavour decuplet.
The weight diagrams of the octets and decuplets (Fig. 13.2) can be constructed
by superimposing the weight diagrams of the fundamental representation of SU(3)
(Fig. 7.1, left). They correspond to the 10 + 8 known ground state baryons, although
with three flavours one would expect 27 states. However, we will show below that
for symmetry reasons both octets are needed to describe the flavour wavefunctions
of the eight spin- 1

2 baryons, and that an SU(3)f ground state singlet does not exist.
The ground state “stable” (weak or electromagnetically decaying) hyperons

which contain at least one s quark are listed in Table 13.1. Apart from the decuplet
�− they are spin- 1

2 octet states decaying weakly via the strangeness changing
|S| = 1 interaction (the �0 decays electromagnetically). High energy hyperon
beams can be produced thanks to their relatively long lifetimes. Section 14.2 will
be devoted to measurements of their magnetic moments. Additional ground state
qqq baryons beyond those predicted by SU(3)f in Fig. 13.2 have not been found.
States such as + or−− do not exist. Note that the charge conjugated�+ = |uus〉
antihyperon is negatively charged and is not identical to the �− = |dds〉.

Figure 13.3 (left) shows for example the discovery of the 0 in a hydrogen bubble
chamber, produced by the reaction K−p → K0 0, followed by the cascade decay
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Fig. 13.2 Weight diagrams of the octet and decuplet ground state baryons. The arrows refer to the
electric charges

Table 13.1 Main decay modes and mean lives of the ground state “stable” hyperons

Mass Quark Main decay modes Mean life

JP [MeV] content S (branching ratio in %) [×10−10 s]

� 1
2

+
1116 uds −1 pπ− (64), nπ0 (36) 2.63

�+ 1
2

+
1189 uus −1 pπ0 (52), nπ+ (48) 0.80

�0 1
2

+
1193 uds −1 �γ (�100) a

�− 1
2

+
1197 dds −1 nπ− (�100) 1.48

 0 1
2

+
1315 uss −2 �π0 (�100) 2.90

 − 1
2

+
1322 dss −2 �π− (�100) 1.64

�− 3
2

+
1672 sss −3 �K− (68),  0π− (24),  −π0 (8) 0.82

The � and �0 have the same quark content, yet different SU(3)f wavefunctions
a7.4 × 10−20 s

 0 → �π0, � → π−p and K0 → π+π−, with 1.15 GeV/c kaons from the
Berkeley Bevatron [1]. The line joining the  0 production point (red dot) and the
� decay vertex (blue dot) does not lie in the plane spanned by the π− and p tracks
from � decay, nor is it parallel to the plane spanned by the incident kaon and the
K0 directions. This points to the emission of an additional invisible particle (the
π0). There are enough constraints to reconstruct the reaction and the  0 mass was
measured to be 1326 ± 20 MeV.

Figure 13.3 (right) shows the discovery of the �− hyperon at BNL [2]. The �−
was produced by the strong interactionK−p → �−K+K0 in a 5 GeV/c kaon beam
from the AGS. The bubble chamber photograph shows the decay �− →  0π−
followed by  0 → �(→ pπ−)π0, where the two photons from π0 decay produce
e+e− pairs. The �− mass was calculated to be 1686 ± 12 MeV.
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Fig. 13.3 Left: production and decay of the first  0 hyperon observed in a bubble chamber [1].
The trajectories of the invisible neutral particles are shown by dashed lines (see the text). Right:
bubble chamber photograph showing the production and decay of the �− [2]

The j = 3
2 hyperons belong to the SU(3)f decuplet. Figure 13.4 shows the

π+p and π−p total cross sections as a function of center-of-mass energy. The N
resonances have isospin 1

2 and therefore do not contribute to π+p. The low energy
region is dominated by the excitation of the ++ and 0 resonances in π+p and
π−p, respectively.

The and the strangeness S = −1 and −2 hyperons decay strongly (as indicated
by their masses in parentheses) and have very short lifetimes. For example, the
 (1532)0 decays into  0π0 and  −π+. The � and  have the same quark content
as the j = 1

2 hyperons, but different SU(3)f wavefunctions, as will be discussed
below.

13.2 SU(2) Wavefunctions of Three Light Quarks

In order to derive the flavour wavefunctions of 3-quark states we first need to study
their spin (and isospin) structure. Let us therefore construct the spin wavefunctions
of 3-quark systems. The simplest configuration is that of the  resonance with j =
3
2 and parallel spins. The spin wavefunction is simply given by

|χjm〉 ≡ |χ
3
2
3
2
〉 = | ↑↑↑〉, (13.4)
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Fig. 13.4 π+p and π−p
total cross sections σt as a
function of center-of-mass
energy. The upper scale
shows the corresponding
laboratory kinetic energy of
the incident pion. Several
excited baryons contribute to
the peaks above 1.4 GeV. The
labels refer to the dominating

ones, the spin- 3
2

−
N(1520),

5
2

+
N(1680) and 7

2
+

(1950)

to which we apply J− (Table 6.2):

J−|χ
3
2
3
2
〉 = √

3|χ
3
2
1
2
〉. (13.5)

Operating J− in turn on each quark gives

J−| ↑↑↑〉 = | ↓↑↑ + ↑↓↑ + ↑↑↓〉 (13.6)

and therefore

|χ
3
2
1
2
〉 = 1√

3
| ↓↑↑ + ↑↓↑ + ↑↑↓〉, (13.7)

a normalized wavefunction. From now on we will apply the ladder operators on
the quarks and then normalize the result. Starting from the  wavefunction with
reversed spins

|χ
3
2

− 3
2
〉 = | ↓↓↓〉, (13.8)
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one finds by operating with J+ and normalizing,

|χ
3
2

− 1
2
〉 = 1√

3
| ↓↓↑ + ↓↑↓ + ↑↓↓〉. (13.9)

The four spin- 3
2 wavefunctions build the quadruplet predicted by the decomposi-

tion (6.47):

2 × 2 × 2 = 2 + 2 + 4. (13.10)

On the other hand, we also expect two doublets with spin 1
2 . Consider the

configurations with m = + 1
2 in which the spin projection of a diquark vanishes,

while the third quark has spin up (+ 1
2 ). The diquark couples to s = 0 (antisymmetric

state |00〉 in (2.30)) or to s = 1 (symmetric state |10〉 in (2.29)). The wavefunction
of the so-called mixed symmetric case (in which the permutation of the first two
quarks is symmetric) reads

|χ
1
2
1
2
〉 = 1√

2
| ↑↓↑ + ↓↑↑〉 + α| ↑↑↓〉. (13.11)

The third term with α �= 0 is needed, otherwise the wavefunction cannot be made
orthogonal to (13.7). Multiplying from the left with the bra of (13.7) and requiring
that

2
1√
2

1√
3

+ α√
3

= 0, (13.12)

leads to α = −√
2. The normalized wavefunction is then equal to

|χ
1
2
1
2
〉 = 1√

6
| ↑↓↑ + ↓↑↑〉 −

√
2

3
| ↑↑↓〉

= 1√
6
| ↑↓↑ + ↓↑↑ −2 ↑↑↓〉. (13.13)

Operating with J− on each quark gives

1√
6
| ↓↓↑ −2 ↓↑↓〉 (1st quark)

+ 1√
6
| ↓↓↑ −2 ↑↓↓〉 (2nd quark)

+
√

1

6
| ↑↓↓ + ↓↑↓〉 (3rd quark), (13.14)
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hence

|χ
1
2

− 1
2
〉 = − 1√

6
| ↑↓↓ + ↓↑↓ −2 ↓↓↑〉. (13.15)

For the mixed antisymmetric case the wavefunction

|χ
1
2
1
2
〉′ = 1√

2
| ↑↓↑ − ↓↑↑〉 (13.16)

is orthogonal to all previous ones. Operating again with J− on each quark gives

1√
2
| ↓↓↑〉 (1st quark)

− 1√
2
| ↓↓↑〉 (2nd quark)

+ 1√
2
(| ↑↓↓〉 − | ↓↑↓〉) (3rd quark), (13.17)

or

|χ
1
2

− 1
2
〉′ = 1√

2
| ↑↓↓ − ↓↑↓〉. (13.18)

The results are collected in Table 13.2.
The isospin wavefunctions for baryons with u, and d quarks are immediately

found by formally replacing ↑ by u and ↓ by d (Table 13.3). The quadruplets are

Table 13.2 Normalized spin wavefunctions for baryons

|χS 〉 = |χ
3
2
3
2
〉 = | ↑↑↑〉 s = 3

2

|χ
3
2
1
2
〉 = 1√

3
| ↓↑↑ + ↑↓↑ + ↑↑↓〉

|χ
3
2

− 1
2
〉 = 1√

3
| ↓↓↑ + ↓↑↓ + ↑↓↓〉

|χ
3
2

− 3
2
〉 = | ↓↓↓〉

|χMS 〉 = |χ
1
2
1
2
〉 = 1√

6
| ↑↓↑ + ↓↑↑ −2 ↑↑↓〉 s = 1

2

|χ
1
2

− 1
2
〉 = − 1√

6
| ↑↓↓ + ↓↑↓ −2 ↓↓↑〉

|χMA〉 = |χ
1
2
1
2
〉′ = 1√

2
| ↑↓↑ − ↓↑↑〉 s = 1

2

|χ
1
2

− 1
2
〉′ = 1√

2
| ↑↓↓ − ↓↑↓〉

The quadruplet functions |χS 〉 are symmetric, the doublet functions mixed symmetric (|χMS 〉) or
mixed antisymmetric (|χMA〉) under permutations of the first two quarks
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Table 13.3 Normalized
isospin wavefunctions for
baryons made of the two
lightest quarks

|φS〉 = |φ
3
2
3
2
〉 = |uuu〉 ++

|φ
3
2
1
2
〉 = 1√

3
|duu+ udu+ uud〉 +

|φ
3
2

− 1
2
〉 = 1√

3
|ddu + dud + udd〉 0

|φ
3
2

− 3
2
〉 = |ddd〉 −

|φMS〉 = |φ
1
2
1
2
〉 = 1√

6
|udu+ duu− 2uud〉 p

|φ
1
2

− 1
2
〉 = − 1√

6
|udd + dud − 2ddu〉 n

|φMA〉 = |φ
1
2
1
2
〉′ = 1√

2
|udu− duu〉 p

|φ
1
2

− 1
2
〉′ = 1√

2
|udd − dud〉 n

The quadruplet functions |φS〉 are symmetric, the doublet
functions mixed symmetric (|φMS〉) or mixed antisymmetric
(|φMA〉) under permutations of the first two quarks

assigned to the isospin- 3
2  resonance and the doublets to the isospin- 1

2 nucleon. As
we will show below, both doublets of spin and isospin are needed to describe the
nucleon.

13.3 SU(3) Wavefunctions of Three Light Quarks

Starting from the u and d quarks we now construct the octet and decuplet
wavefunctions with the ladder operators U± and V±. Recall that U− transforms
a d quark into an s quark, U−|d〉 = |s〉, while U−|u〉 = 0. We get by starting from
the proton in Fig. 13.2 (left):

|�+〉 = U−
[

1√
6
|udu+ duu− 2uud〉

]
= 1√

6
|usu+ suu− 2uus〉 (13.19)

for the MS case and

|�+〉 = U−
[

1√
2
|udu− duu〉

]
= 1√

2
|usu− suu〉 (13.20)

for the MA one. Successive clockwise applications of V−, I−, U+, and V+ produce
the wavefunctions on the octet periphery. They are listed in Table 13.4.

The wavefunctions of the two i = 0 states are obtained with the same method
as those for the mesons in Chap. 7. The center of the octet is reached by applying
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Table 13.4 SU(3)f wavefunctions of the spin- 1
2 ground state baryons made of u, d and s quarks

φMS φMA

p 1√
6
|(ud + du)u− 2uud〉 1√

2
|(ud − du)u〉

n − 1√
6
|(ud + du)d − 2ddu〉 1√

2
|(ud − du)d〉

�+ 1√
6
|(us + su)u − 2uus〉 1√

2
|(us − su)u〉

�0 1
2
√

3
|(sd + ds)u + (su + us)d 1

2 |(ds − sd)u + (us − su)d〉
−2(du + ud)s〉

�− 1√
6
|(ds + sd)d − 2dds〉 1√

2
|(ds − sd)d〉

� 1
2 |(sd + ds)u − (su + us)d〉 1

2
√

3
|(sd − ds)u + (us − su)d

+2(ud − du)s〉
 − − 1√

6
|(ds + sd)s − 2ssd〉 1√

2
|(ds − sd)s〉

 0 − 1√
6
|(us + su)s − 2ssu〉 1√

2
|(us − su)s〉

The first two quarks are grouped in parentheses to emphasize the symmetry properties

V− on the proton (u → s). For the MS case

|ϕ〉 = V−
[

1√
6
|(udu+ duu− 2uud〉

]

= 1√
6
|sdu− 2sud + dsu− 2usd + dus + uds〉. (13.21)

Applying I− (u→ d) on the �+ (13.19) leads to the (unnormalized)�0:

|ϕ′〉 = 1√
6
|sdu+ sud + dsu+ usd − 2dus − 2uds〉. (13.22)

To find the state � orthogonal to ϕ′ we apply the Gram-Schmidt procedure (7.25):

|�〉 = |ϕ′〉 − α|ϕ〉 (13.23)

with

〈�|ϕ′〉 = 0 = 〈ϕ′|ϕ′〉 − α〈ϕ|ϕ′〉 = 2 + α ⇒ α = −2, (13.24)

therefore

|�〉 = |ϕ′〉 + 2|ϕ〉 = 3√
6
|sdu− sud + dsu− usd〉. (13.25)
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After normalizing one finally obtains the wavefunction listed in Table 13.4

|�〉 = 1

2
|sdu+ dsu− sud − usd〉, (13.26)

and with (13.22)

|�0〉 = 1

2
√

3
|sdu+ dsu+ sud + usd − 2dus − 2uds〉. (13.27)

The wavefunctions for the MA case are derived in a similar way (Problem 13.2).
In the quark model the total wavefunction of a baryon should be symmetric

under the permutation of any pair of quarks. Colour is then added to make the
wavefunction antisymmetric, as required for fermions (Chap. 10). A fully symmetric
wavefunction for spin- 1

2 baryons is constructed by combining the spin states χMS
and χMA with the flavour states φMS and φMA. It is a simple but tedious exercise to
prove that the 16 (m = ± 1

2 ) wavefunctions

| 1
2
+〉 = 1√

2
|φMSχMS + φMAχMA〉 (13.28)

are fully symmetric under the permutation of any pair of quarks. In fact, using
instead the combination 1√

2
|φMSχMA − φMAχMS〉, which turns out to be fully

antisymmetric, leads to the wrong proton and neutron magnetic moments (Problem
14.1). This combination occurs for excited baryons with one unit of angular
momentum, see (15.16) in Chap. 15.

Starting from the isospin- 3
2 wavefunctions in Table 13.3 one can construct in a

similar way the SU(3)f states φS for three quarks by applying the ladder operators
U±, V± and I±. They are fully symmetric under permutations of any pair of quarks
and are listed in Table 13.5. The total wavefunctions of the 40 spin- 3

2 baryons are

Table 13.5 SU(3)f
wavefunctions φS of the
ground state spin- 3

2 baryons

φS

++(1233) |uuu〉
+(1232) 1√

3
|uud + udu+ duu〉

0(1231) 1√
3
|udd + dud + ddu〉

−(1230) |ddd〉
�+(1383) 1√

3
|uus + usu+ suu〉

�0(1384) 1√
3
|uds + usd + sdu〉

�−(1387) 1√
3
|dds + dsd + sdd〉

 0(1532) 1√
3
|uss + sus + ssu〉

 −(1535) 1√
3
|dss + sds + ssd〉

�− |sss〉
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then obtained by combining the functions φS and χS :

| 3
2
+〉 = |φSχS〉 . (13.29)

Combining SU(3)f with SU(2)spin leads to SU(6) and it is easy to derive with the
help of Young tableaux the decomposition

6 × 6 × 6 = 56 + 70 + 70 + 20. (13.30)

Our 8×2 octet + 10×4 decuplet ground state baryons build the 56-dimensional
representation. In fact, the orbital wavefunction still needs to be combined with
SU(6) to build the final total wavefunction, which is required to be symmetric. We
have ignored this contribution, since in the absence of angular momentum the orbital
wavefunction is anyway symmetric.
The last SU(3)f orthogonal state, the singlet in (13.3), is totally antisymmetric:

|φA〉 = 1√
6
|s(du− ud)+ (usd − dsu)+ (du− ud)s〉. (13.31)

As Table 13.2 shows, an antisymmetric spin wavefunction cannot be made with
three spins and thus φA cannot be combined with any spin state to generate a totally
symmetric wavefunction for ground state baryons. Therefore φA is not realized for
ground state baryons but occurs for the first orbital excitations, in the 70-plet and
20-plet of SU(6), see Chap. 15.

13.4 Gell-Mann-Okubo Mass Formula

SU(3)f symmetry implies that masses within multiplets should all be equal, which
is neither the case for mesons nor for baryons. The symmetry is badly broken,
but many predictions can nevertheless be made with the help of the flavour
wavefunctions just discussed. In the next section we will derive the magnetic
moments of baryons and compare with data. Let us derive here a simple predictive
mass formula for octet baryons. The weight diagram of the ground state decuplet
is reproduced in Fig. 13.5. Isospin multiplets are almost degenerate. The small
splittings are due to the difference between u and d masses and to electromagnetic
attraction or repulsion. (We have already seen that Coulomb repulsion reduces
the binding and hence increases the hadron mass, while mu < md acts in the
opposite direction.) The equal spacing rule states that the mass difference between
isospin multiplets is approximately constant with m ∼150 MeV. The splitting is
essentially due to the heavier s quark.
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Fig. 13.5 The average isospin multiplet mass increases by m ∼150 MeV with every unit |S| of
strangeness (equal spacing rule)

Fig. 13.6 Clockwise rotation of the baryon octet by 120◦

Let us write the mass of a charged decuplet baryon as

m = m0 +S ·m+Q · δm (13.32)

wherem0 is the average neutral decuplet baryon mass and δm is the electromagnetic
correction. The electromagnetic interaction is u3-independent since baryons with
the same electric chargeQ are connected by the ladder operator U± in Fig. 13.5.

Let us now rotate the weight diagram of the fundamental representation (Fig. 7.1,
left) by 120◦ clockwise, i.e. d → u → s → d . The u3-axis now replaces the i3-
axis with u3(d) = 1

2 , u3(u) = 0 and u3(s) = − 1
2 . The effect on the octet is shown in

Fig. 13.6 with the neutral baryons now appearing on the abscissa. The �0′
and the

�′ are rotated states, i.e.

|�0′ 〉 = a|�0〉 + b|�〉 (13.33)
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with

a2 + b2 = 1. (13.34)

We have proved (Problem 7.1) that U−I+ = I+U−. Thus from Fig. 13.6 (left)

U−I+|n〉 = U−|p〉 = |�+〉, (13.35)

while from Fig. 13.6 (right)

I+U−|n〉 = I+
√

2|�′
0〉 = √

2I+(a|�0〉 + b|�〉) = √
2
√

2 a|�+〉, (13.36)

therefore a = 1
2 (the factors

√
2 arise from the matrix elements in Table 6.2 for

I -spin and U -spin triplets). Introducing a and b into (13.33) gives

|�′
0〉 = 1

2
|�0〉 +

√
3

2
|�〉. (13.37)

Let us definem0 ≡ m(�0′
) and apply the equal spacing rule. Then

m( 0) = m0 −m and m(n) = m0 +m, (13.38)

or

m0 = m( 0)+m(n)
2

. (13.39)

One gets for (13.37) by introducing the mass Hamiltonian,

m(�0′
) = 1

4
〈�0|H |�0〉 + 3

4
〈�|H |�〉 = m(�0)+ 3m(�)

4
= m0, (13.40)

and finally with (13.39) the Gell-Mann-Okubo mass formula

m(�0)+3m(�)
4 = m( 0)+m(n)

2 . (13.41)

The measured masses gives 1135 MeV on the left-hand side and 1127 MeV on the
right-hand side, in reasonable agreement.
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Chapter 14
Magnetic Moments of Baryons

In this chapter we use the baryon SU(6) wavefunctions to predict the magnetic
dipole moments of the long-lived baryons and to compare with experimental data.
The magnetic moment of a particle with massm is equal to its g-factor multiplied by
e

2m�s. For a spin- 1
2 baryon the g-factor departs from the value of g = 2 predicted by

the Dirac equation, due to its internal structure. The magnetic moment of a baryon
B is conventionally written relative to that of the proton and hence expressed in
nuclear magnetons μN :

�μB = gBμN �s, (14.1)

where

μN = e

2mp
. (14.2)

The quark model predicts the factor gB . The magnetic dipole moment is obtained
by computing the expectation value of the operator �μi = g(

qie
2mi
)�s on quark i with

charge qie, constituent mass mi , g = 2 for point-like fermions, and by adding the
contributions of the three quarks. We assume that the constituent masses of the u
and d quarks are equal, hence that mu = md ≡ m, while the s quark has the mass
ms . The magnetic moments of the quarks are then given by

μu = 2

3

( e
2m

)
, μd = −1

3

( e
2m

)
, μs = −1

3

(
e

2ms

)
. (14.3)
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14.1 Magnetic Dipole Moment of the Nucleon

The magnetic dipole moment of the proton, obtained by adding the quark contribu-
tions, is equal to

μp =
3∑
i=1

〈p ↑ |2μiszi |p ↑〉 =
3∑
i=1

〈p ↑ |μiσzi |p ↑〉, (14.4)

where |p ↑〉 is the wavefunction for a proton with spin along the z-axis and �s ≡ 1
2 �σ .

The proton wavefunction is (Tables 13.2 and 13.4)

|p ↑〉 = 1√
2

1√
6

1√
6
|udu+ duu− 2uud〉| ↑↓↑ + ↓↑↑ −2 ↑↑↓〉

+ 1√
2

1√
2

1√
2
|udu− duu〉| ↑↓↑ − ↓↑↑〉

= 1

6

1√
2
[|udu+ duu− 2uud〉| ↑↓↑ + ↓↑↑ −2 ↑↑↓〉

+|3udu− 3duu〉| ↑↓↑ − ↓↑↑〉. (14.5)

Grouping the terms in udu and duu gives

|p ↑〉 = 1

6

1√
2

×4|udu ↑↓↑〉 − 2|udu ↓↑↑〉 − 2|udu ↑↑↓〉
−2|duu ↑↓↑〉 + 4|duu ↓↑↑〉 − 2|duu ↑↑↓〉
−2|uud ↑↓↑〉 − 2|uud ↓↑↑〉 + 4|uud ↑↑↓〉. (14.6)

The eigenvalues of
∑
μiσzi are

2μu−μd︷ ︸︸ ︷
μu − μd + μu, ���−μu + μd +��μu, ��μu + μd −��μu,

μd −��μu +��μu,

2μu−μd︷ ︸︸ ︷−μd + μu + μu, μd +��μu −��μu,

��μu −��μu + μd, −��μu +��μu + μd,
2μu−μd︷ ︸︸ ︷

μu + μu − μd, (14.7)
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operating on each of the nine kets in (14.6), respectively. Taking into account the
orthonormality of the kets, one obtains by left-multiplying with 〈p ↑ |

μp =
[

1

6

1√
2

]2

[3 × (2μu − μd)× 16 + 6 × μd × 4]

=
[

1

6

1√
2

]2

(96μu − 24μd) = 4

3
μu − 1

3
μd, (14.8)

or with (14.3)

μp = e
2m . (14.9)

Let us repeat the calculation for the magnetic moment of the neutron. The
wavefunction is given by

|n ↑〉 = − 1√
2

1√
6

1√
6
|udd + dud − 2ddu〉| ↑↓↑ + ↓↑↑ −2 ↑↑↓〉

+ 1√
2

1√
2

1√
2
|udd − dud〉| ↑↓↑ − ↓↑↑〉

= 1

6

1√
2
[−|udd + dud − 2ddu〉| ↑↓↑ + ↓↑↑ −2 ↑↑↓〉

+|3udd − 3dud〉| ↑↓↑ − ↓↑↑〉. (14.10)

Grouping the terms in udd and dud gives

|n ↑〉 = 1

6

1√
2

×2|udd ↑↓↑〉 − 4|udd ↓↑↑〉 + 2|udd ↑↑↓〉
−4|dud ↑↓↑〉 + 2|dud ↓↑↑〉 + 2|dud ↑↑↓〉
2|ddu ↑↓↑〉 + 2|ddu ↓↑↑〉 − 4|ddu ↑↑↓〉. (14.11)

The eigenvalues of
∑
μiσzi are

μu −��μd +��μd,

2μd−μu︷ ︸︸ ︷−μu + μd + μd, μu +��μd −��μd,

2μd−μu︷ ︸︸ ︷
μd − μu + μd, −��μd + μu +��μd, ��μd + μu −��μd,

��μd −��μd + μu, −��μd +��μd + μu,
2μd−μu︷ ︸︸ ︷

μd + μd − μu, (14.12)
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operating on each of the nine kets in (14.11), respectively. By left-multiplying with
〈n ↑ | one gets

μn =
[

1

6

1√
2

]2

[6 × μu × 4 + 3 × (2μd − μu)× 16]

=
[

1

6

1√
2

]2

(−24μu + 96μd) = −1

3
μu + 4

3
μd, (14.13)

or with (14.3)

μn = − 2
3

(
e

2m

)
. (14.14)

Hence with (14.9) one arrives at the prediction for the ratio of magnetic dipole
moments

μn
μp

= gn
gp

= − 2
3 . (14.15)

(see Problem 14.1).
The magnetic dipole moment of the proton was measured for the first time with a

molecular H2 beam by the much celebrated experiment of Frisch and Stern [1].
In ortho-hydrogen the two protons form a spin triplet, in para-hydrogen a spin
singlet. At room temperature the ratio of ortho- to para-hydrogen is 3:1, while at low
temperature the more strongly bound para-hydrogen dominates. In a Stern-Gerlach
experiment the force exerted by the inhomogeneous magnetic field on the magnetic
dipole moment operates only on the spin-1 state. (The magnetic moments of the
electrons cancel.) However, the two-proton wavefunction must be antisymmetric
and therefore the relative angular momentum is odd, at least equal to one. The
rotation of the molecule leads to a contribution to the magnetic dipole moment
which can be measured with para-hydrogen in a low temperature beam, before being
subtracted from the measurement with ortho-hydrogen. The result of the experiment
(gp between 4 and 6) led to the stunning conclusion that the g-factor was much
larger than the value of 2 expected from the Dirac theory.

Modern measurements are performed in electromagnetic (Penning) traps. The
spin-flip frequency is measured with an alternatingB-field perpendicular to the main
magnetic field [2]). The magnetic moment of the proton (gp � 5.58) is now known
to a precision of 0.3×10−9 [3].

The magnetic moment of the neutron (gn � –3.82) was measured in a cold
neutron beam at the ILL nuclear reactor in Grenoble and compared to that of the
proton using flowing water [4]. The neutrons, polarized by a magnetic mirror, passed
through an homogeneous magnetic field spectrometer equipped with spin flipping
RF cavities, before being detected by a 6Li loaded glass scintillator. The protons
from the water were polarized by a strong magnetic field and detected by NMR
methods. The result was confirmed more recently by comparing to the well-known



14.2 Magnetic Dipole Moments of Hyperons 173

magnetic moment of 199Hg , using ultra-cold neutrons stored in a magnetic bottle
[5]. The magnetic moment of the neutron is known to a precision of 0.2×10−6 [6].
The value for the ratio gn

gp
is –0.6849793 ± 0.0000002 [6]) for which the naive

prediction (14.15) is an impressive approximation.
The mass m of the u and d quarks can be estimated from (14.1) and (14.9):

μp = gp

2
μN = 2.79

(
e

2mp

)
= e

2m
⇒ m = mp

2.79
= 336 MeV. (14.16)

14.2 Magnetic Dipole Moments of Hyperons

The magnetic moment of the lightest hyperon, the � (uds), is easy to predict: the
isospin- 1

2 u and d quarks couple to i = 0, since i(s) = 0 and i(�) = 0, and are
therefore in an antisymmetric state. Hence their spins also couple to zero and the
magnetic moment of the � stems from the s quark. One expects that

μ� = μs = e

2ms

(
−1

3

)
. (14.17)

14.2.1 � Decay

Before discussing a typical measurement of μ� we need to derive the angular
distribution of the daughter products in � → π−p decay. A heuristic approach
will suffice here while a more precise treatment will be described in Sect. 18.1. The
� being a spin- 1

2 particle, the relative angular momentum between the pion and the
proton is � = 0 or 1, hence parity is not conserved. Indeed, the decay is mediated by
the strangeness changing weak interaction and is therefore parity violating.

Let us define as z-axis the flight direction of the proton in the � rest frame and
as z1 the direction of the hyperon spin. Let us assume for the moment that the
proton flies along z = z1 (θ = 0, Fig. 14.1) . Since the projection of the angular
momentum is equal to zero along z, the projection of the proton spin is along the �
spin, ms = + 1

2 . The 2-dimensional final state spinor is given by the sum of the � =
0 and 1 contributions

|π−p〉 = α0

〈
1

2

1

2

∣∣∣∣0
1

2
0 + 1

2

〉
+ α1

〈
1

2

1

2

∣∣∣∣1
1

2
0 + 1

2

〉
=
(
α0 − 1√

3
α1

0

)
, (14.18)

using the Clebsch-Gordan coefficients in Fig. 2.8. The unknown constants α0 and
α1 are complex. Assume now that the proton flies along z = z2 in the direction
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Fig. 14.1 �→ π−p:
angular distribution of the
proton in the rest frame of
the �

opposite to the � spin (θ = 180◦). The final state spinor is with ms = − 1
2

|π−p〉 = α0

〈
1

2
− 1

2

∣∣∣∣0
1

2
0 − 1

2

〉
+ α1

〈
1

2
− 1

2

∣∣∣∣1
1

2
0 − 1

2

〉
=
(

0
α0 + 1√

3
α1

)
. (14.19)

Finally, let us assume that the proton flies along z3, in the direction perpendicular
to the hyperon spin, that is with θ = 90◦ in the � rest frame. The spinor is an
equal superposition of (14.18) and (14.19). This can be achieved by multiplying the
spinors with cos θ2 and sin θ

2 , respectively. The decay intensity for any proton angle
θ is then proportional to

w(θ) = 〈π−p|π−p〉 = cos2 θ

2

∣∣∣∣α0 − α1√
3

∣∣∣∣
2

+ sin2 θ

2

∣∣∣∣α0 + α1√
3

∣∣∣∣
2

, (14.20)

which describes the angular distribution of the proton in the rest frame of a 100%
polarized � along z1. Defining S ≡ α0 and P ≡ − α1√

3
, and expressing w as a

function of cos θ gives

w(θ) = |α0|2 + |α1|2
3

− 2Re
α∗

0α1√
3

(
cos2 θ

2
− sin2 θ

2

)

= (|S|2 + |P |2){1 + 2Re[S∗P ]
|S|2 + |P |2︸ ︷︷ ︸

≡α�

cos θ}. (14.21)

Normalizing over 4π leads to the angular distribution of the proton in the rest frame
of the 100% polarized�:

w(θ) = 1

4π
(1 + α� cos θ). (14.22)
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The parity violating forward-backward asymmetry is due to the interference of the
S (� = 0) and P (� = 1) waves.

For hyperons with partial polarization P� one needs to add the fractional
contributions from decays with � spins along the z1 and the z2 directions:

w(θ) = 1

4π

[
1 + P�

2

]
(1 + α� cos θ)+ 1

4π

[
1 − P�

2

]
(1 − α� cos θ),

= 1

4π
(1 + α�P� cos θ). (14.23)

For an unpolarized hyperon it is easy to see that the proton is longitudinally
polarized with polarization Pp = α�: let us divide the number of unpolarized
hyperons in 50% with polarizations P� = +1 and 50% P� = −1 along the z-axis,
taken as the direction of the proton. The number of protons flying in +z direction
is proportional to 1 + α� and 1 − α�, respectively. The former are polarized in the
forward direction, the latter in the backward direction. The proton polarization is
therefore given by

Pp = 1 + α� − (1 − α�)
1 + α� + (1 − α�) = α�. (14.24)

This property has been used to measure α� [7]. The � hyperons were produced
from the reaction π−p → K0� at the BNL Cosmotron with 1 GeV/c pions
impinging on a polyethylene target (Fig. 14.2). A veto counter suppressed reactions
producing charged particles and the decays � → π−p and/or K0 → π+π−
were photographed with a spark chamber array. The proton track was identified
by kinematics constraints and through its heavy ionization of the chamber gas.

The hyperons produced in π−p → K0� happen to be polarized. The polar-
ization is orthogonal to the scattering plane, due to parity conservation in the
strong production process [8]. However, the � is on average unpolarized when the
orientation of the scattering plane is ignored in the subsequent analysis. The proton
is then polarized along its flight direction in the � rest frame. In the non-relativistic
limit the spin direction does not change (in contrast to the momentum vector) when
boosting the proton momentum from the � rest frame into the laboratory. This is
a good approximation in the present case. In the laboratory the proton polarization
therefore acquires a component P⊥ perpendicular to the proton momentum (see
Fig. 14.2), which can be obtained by measuring the asymmetry a in proton-carbon
scattering:

a(θp) = nL − nR
nL − nR = P⊥AC(θp). (14.25)

The scattering rates to the left and to the right in the plane perpendicular to the
proton polarization are denoted by nL and nR , respectively. AC is the known
analyzing power of carbon which depends on the proton scattering angle θp and on
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Fig. 14.2 Measurement of the asymmetry parameter α� in � decay [7]. The polarization of
the decay proton is analyzed by measuring the left-right asymmetry in proton-carbon scattering.
The blue arrows show the momentum and polarization of the proton in the � rest frame for an
unpolarized hyperon. The angle between the proton momentum and the polarization vector in the
laboratory (red arrow) can be calculated with the usual Lorentz transformations

its energy. The result α� = Pp = +0.63 ± 0.08 leads to a large forward-backward
asymmetry in Fig. 14.1. The current best value1 is α� = 0.642 ± 0.013.2 From the
angular distribution (14.23) one then finds that the � hyperons are produced with
the polarization P� � 50%.

14.2.2 Magnetic Moment of the �

The magnetic moment of the�was measured at Fermilab by using the property that
spin- 1

2 ground state hyperons produced inclusively in high energy proton-nucleon
interactions (pN → hyperon + X) are polarized, with typical polarizations in the
range of 10–30%, depending on hyperon momentum (Fig. 14.3). Figure 14.4 shows

1Since CP conservation is a very good approximation, one also expects for the decay of the
antihyperon � → pπ+ an angular distribution of the form 1 + α� cos θ where α� = −α�.
This is because parity reverses the (polar) momentum vectors but not the (axial) spin vectors. For
� decay the tabulated value is α� = –0.71 ± 0.08 [6] which is within large errors in agreement
with CP invariance.
2BESIII reports the larger value α� = 0.75 ± 0.01 from J/ψ decay into�� [9].
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Fig. 14.3 Left: polarizations of the � and � produced at 400 GeV, as a function of transverse
momentum. Right: polarizations of � and  produced at small angles (5 to 8 mrad), as a function
of hyperon momentum (adapted from [10])

Fig. 14.4 Sketch of the apparatus to measure the magnetic moment of the � hyperon [11]

a sketch of the experimental setup using 300 GeV protons impinging on a beryllium
target [11].

The hyperon beam is defined by a collimator and charged particles are swept
away by a vertical magnetic field B. Owing to parity conservation, the � hyperons
are polarized in the direction perpendicular to the plane spanned by the incident
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proton and outgoing� momenta. Since this plane is not defined for a � emitted in
the direction of the incident proton, the beam is directed towards the target under a
small vertical incident angle of 7 mrad. The polarization is typically 8%. The spin of
the � then precesses in the magnetic field before the � decays, e.g. into π−p. The
pion and proton are analyzed in a magnetic spectrometer and detected by multiwire
proportional chambers. The average decay length is 10 m. The Larmor frequency is
given by

ωL = (μ�↑ −μ�↓)B = 2μ�B, (14.26)

leading to the precession angle

� = 2μ�
β

∫
Bd� � 2μ�

μN

∫
Bd�× μN = 18.3◦μ�

μN

(∫
Bd� [Tm]

)
,

(14.27)

for β � 1. We have introduced the numerical value 3.15×10−14 MeV/T for the
nuclear magneton (14.2), applied the transformation of units (1.7) and expressed
the angle � in degrees.

The direction of the polarization vector at the decay point is obtained by mea-
suring the asymmetric angular distribution of the proton (Fig. 14.1). The measured
precession angle is shown in Fig. 14.5a as a function of the field integral along the�
path. The measurements for various momenta lead to consistent results (Fig. 14.5b)
with the average value

μ� = −0.6138 ± 0.0047 μN. (14.28)

Fig. 14.5 (a) Spin precession
angle as a function of field
integral; (b) magnetic
moment μ� for various
momenta [11]
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The mass of the s quark can be estimated with (14.9) and (14.17):

μ�

μp
= −0.614

2.79
= − m

3ms
⇒ ms = 1.51m = 509 MeV. (14.29)

The magnetic moment of the�+ (uus) is easily predicted from that of the proton
by replacing the d quark in (14.8) by an s quark:

μ�+ = 4

3
μu − 1

3
μs = 8

9

2.79μN︷ ︸︸ ︷( e
2m

)
+1

9

−3μ�︷ ︸︸ ︷(
e

2ms

)
= 2.68 μN (14.30)

with (14.17) and the numerical value (14.28). The magnetic moment of the �+
has also been measured with the precession method using its decay into pπ0. The
angular dependence of the decay nucleon is of the form (14.22) with α�+ � −0.98
[6]. Since the hyperon trajectories are curved in the magnetic field, one measures
the spin precession angle with respect to the direction of the momentum. This angle
� varies as a function of time according to

�(t) = θL(t)− θC(t) = eBt

m�+

(
g − 2

2

)
, (14.31)

where θL is the Larmor rotation angle and θC the cyclotron angle. With g( e
2m�+ ) =

g�+( e
2mp

) one gets the precession angle

� = e

m�+

(
g�+m�+

2mp
− 1

)∫
Bd� (14.32)

for hyperons with β � 1. The result is

μ�+ = g�+

2
μN = 2.4613 ± 0.0052 μN, (14.33)

consistent with that of the �+ (–2.428 ± 0.037 μN ) [12]. The magnetic moment of
the �− → nπ− (Problem 14.2) can be measured with the same method, or with
stopped hyperons that are captured in the Coulomb shells of the target atoms. One
then detects the transition X-rays in the �− atoms and measures the fine-structure
splittings which depend on g�− [13].

The magnetic moments of the 0, − and�− are obtained from the polarization
of the �(→ π−p) in the decays �π0, �π− and �K−, respectively. The magnetic
moment of the (spin- 3

2 ) �− is particularly difficult to measure, because the �−
is unpolarized at high energies, in contrast to the other hyperons. Polarized �−
hyperons have been obtained by first producing polarized � and  0 hyperons with
800 GeV protons, and then by transferring the polarization to the �− with the
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reaction (�, 0) Be → �−X on a beryllium target. The magnetic moment measured
from the decay �− → �K− is μ�− = −2.024 ± 0.056μN [14]. Let us compare
with the quark model prediction, assuming ms= 509 MeV (14.29). The wavefunc-
tion of the �− is given by the product (13.29) of the symmetric wavefunctions φS
and χS . For the spin projection + 3

2 along the z-axis the wavefunction is then simply

|�− ↑〉 = |sss ↑↑↑〉. (14.34)

The magnetic moment is predicted by summing over the three s quarks:

μ�− =
3∑
i=1

〈�− ↑ |μiσzi |�− ↑〉 = 3μs. (14.35)

Since μs = μ� (14.17) we predict with the measured � magnetic moment (14.28)
that

μ�− = 3μ� = −1.84 ± 0.01 μN, (14.36)

which deviates from the measured value [14] by three standard deviations.
Table 14.1 lists the current experimental values for the magnetic moments of the

ground state baryons, together with the predictions from the quark model. There are
clearly significant discrepancies, but given its crudeness, our quark model performs
surprisingly well (Problem 14.3).

Table 14.1 Comparison of
quark model predictions and
measured magnetic dipole
moments of the ground state
baryons; κ ≡ e

2m = 2.79 μN
and κs ≡ e

2ms
= –3μ� = 1.84

μN

Quark model Experimental value

Baryon [μN ] [μN ] [6]

p κ input 2.793

n − 2
3κ = –1.86 –1.913

� − 1
3κs input –0.6138 ± 0.0047

�+ 8
9κ + 1

9κs = 2.68 2.458 ± 0.010

�0 2
9κ + 1

9κs = 0.82 –

�0a − 1√
3
κ = –1.61 –1.61 ± 0.08

�− − 4
9κ + 1

9κs = –1.04 –1.160 ± 0.025

 0 − 2
9κ − 4

9κs = –1.44 –1.250 ± 0.014

 − 1
9κ − 4

9κs = –0.51 –0.6507 ± 0.0025

�− −κs = –1.84 –2.024 ± 0.056

aThis line refers to the �0 → � transition magnetic
moment since the mean life of the �0 is too short for
precession experiments
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Chapter 15
Light Baryon Excitations

15.1 Harmonic Oscillator

We have dealt so far with the well established JP = 1
2
+

and 3
2
+

ground state baryons.
Let us now turn on angular momenta �ρ > 0 within one of the qq pairs and/or �λ >
0 between the diquark and the third quark, as shown in Fig. 13.1. The three-body
system involving two-body forces can be treated analytically with the harmonic
oscillator model. To simplify, we shall assume that the three quarks have the same
massm (for the treatment with unequal masses see [1]). Let us introduce the (Jacobi)
parameters

�ρ = 1√
2
(�x1 − �x2), (15.1)

�λ = 1√
6
(�x1 + �x2 − 2�x3), (15.2)

where �x1,2,3 are the spatial coordinates of the quarks. The distance between quark 1

and 2 is
√

2ρ, while the third quark lies at the distance
√

3
2λ (Fig. 15.1):

�x1 − �x2 = √
2 �ρ, (15.3)

�x0 − �x3 = �x2 + �ρ√
2

− �x3 = �x2 + (�x1 − �x2)

2
− �x3

= �x1 + �x2 − 2�x3

2
=
√

3

2
�λ. (15.4)
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Fig. 15.1 The baryon
excitation can be decomposed
into two harmonic
oscillations with amplitude
vectors �ρ and �λ

The momenta associated with �ρ and �λ are

�pρ = 1√
2
( �p1 − �p2), (15.5)

�pλ = 1√
6
( �p1 + �p2 − 2 �p3). (15.6)

It is straightforward to show that the Hamiltonian

H =
3∑
i=1

�pi2
2m

+ 1

2
K
∑
i<j

(�xi − �xj )2 (15.7)

of the (non-relativistic) harmonic oscillator can be recast as

H = �P 2

2 × 3m
+
[ �p 2

ρ

2m
+ 3

2
K �ρ 2

]
+
[

�p 2
λ

2m
+ 3

2
K�λ2

]
, (15.8)

where the first term describes the kinetic energy of the center-of-mass system with
momentum �P = ∑ �pi , which vanishes in the rest frame of the baryon. The problem
thus reduces to two decoupled 3-dimensional harmonic oscillators along �ρ and �λ,

both with frequency ω =
√

3K
m

.

The level energies are given by ω(2k + �+ 3
2 ) = ω(n + 3

2 ) (Fig. 15.2), with h̄ =
1, k = 0, 1, 2 . . . and � = 0, 1, 2 . . . for each oscillator [2], hence the baryon mass
is given by

M = 3m+ constant + ω(2kρ + 2kλ + �ρ + �λ + 3)

= 3m+ constant + ω(nρ + nλ + 3)

= 3m+ constant + ω(N + 3), (15.9)

where N = nρ + nλ = 2kρ + 2kλ + �ρ + �λ is the band number.
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Fig. 15.2 Energy levels of
the 3-dimensional harmonic
oscillator

The baryon angular momentum is �L = ��ρ + ��λ, to which the spin is added,
�J = �L + �s (with s = 1

2 and 3
2 ). The spatial wavefunction being the product of the

two oscillator wavefunctions, the parity is given by (−1)�ρ+�λ . The mass degeneracy
of the levels is given by

dN = (N + 1)(N + 2)(N + 3)(N + 4)(N + 5)

5! . (15.10)

Note that kρ = kλ = 0 for N ≤ 1 . For example, for the ground state N = 0
(�ρ = �λ = 0) one expects with d0 = 1 the spin- 1

2 and 3
2 baryons to have the

same masses. For N = 1, (�ρ, �λ) = (1, 0) or (�ρ, �λ) = (0, 1), hence d1 = 6
(including the [2�ρ + 1] mρ and [2�λ + 1] mλ projections). For N = 2 we have 2
states with kρ = 1 or kλ = 1 and �ρ = �λ = 0, and 3 states with (�ρ, �λ) = (1, 1),
(�ρ, �λ) = (2, 0), (�ρ, �λ) = (0, 2) with kρ = kλ = 0, giving 19 states, hence
d2 = 21. The degeneracy increases very rapidly with N . This simple model, which
does not include spin-spin and spin-orbit interactions, cannot reproduce the mass
spectrum, but is still useful to predict the number of baryon excitations and their
quantum numbers, as we now demonstrate.

We have seen in Sect. 13.3 that the total wavefunction, including the spatial part,
must be fully symmetric under the exchange of any pair of quarks. Hence let us
combine the spin × SU(3)f wavefunctions with those of the harmonic oscillator
and retain the symmetric ones. The ground state solution for one oscillator is given
by

ψn=0(r) =
(
β2

π

) 3
4

e− β2r2

2 (15.11)

with β ≡
√
mω
2 [2]. The baryon orbital wavefunction is given by the product of the

two oscillations in ρ and λ. The ground state wavefunction is proportional to the
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fully symmetric e− β2(ρ2+λ2)
2 , since

ρ2 + λ2 = 1

3
[(�x1 − �x2)

2 + (�x1 − �x3)
2 + (�x2 − �x3)

2]. (15.12)

The 56 SU(6) ground state baryons are therefore described by the symmetric
combinations (13.28) and (13.29). The wavefunction of the first (1p) excited state
is given by [2]

ψn=1,m(r) =
√

8

3

(
β

3
2

π
1
4

)
βrYm1 (θ, φ)e

− β2r2

2 . (15.13)

The orbital wavefunctions of the first excited state (L = 1) are, expressing �ρ and �λ
in spherical coordinates,

ψn=1,m,�ρ=1,�λ=0(ρ) ∝ ρYm1 (θρ, φρ) e− β2(ρ2+λ2)
2 , (15.14)

ψn=1,m,�ρ=0,�λ=1(λ) ∝ λYm1 (θλ, φλ) e− β2(ρ2+λ2)
2 . (15.15)

Now, �ρ is antisymmetric and �λ symmetric under permutations of the two
first quarks, and so are (15.14) and (15.15). These two orbital wavefunctions
have to be combined with a mixed antisymmetric and a mixed symmetric
spin × flavour wavefunction, respectively, to obtain totally symmetric wave-
functions. Table 15.1 shows the symmetry properties of the SU(2)×SU(3)f
functions.

There are four ways to obtain SU(6) mixed symmetries M , leading to 70
negative parity states. The 70-plet decomposes into one spin- 3

2 octet and three spin-
1
2 multiplets, a decuplet, an octet and a singlet (Table 15.2). The 19 baryons with

s = 1
2 can have the quantum numbers JP = 1

2
−

and 3
2
−

and the 8 baryons with

s = 3
2 in addition JP = 5

2
−

. The total wavefunctions are obtained by combining
theMS functions with (15.15) and adding theMA ones combined with (15.14), for
details see [3].

The complexity increases with N . For N = 2 one obtains two 56-plets, two 70-
plets, and one 20-plet with the totally antisymmetric configurations composed of

Table 15.1 SU(6) spin ×
flavour symmetry properties

SU(3)f φ → S M A

SU(2) χ ↓ 10 8 + 8 1

S 4 S M A

M 2 + 2 M SAM M
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Table 15.2 Symmetry properties of the SU(6) wavefunctions for the L = N = 1 baryons (see the
text)

Nr. of
φ × χ MS MA s SU(3)f states

S ×M φSχMS φSχMA
1
2 10 20

M × S φMSχS φMAχS
3
2 8 32

M ×M ( 1√
2
×) −φMSχMS + φMAχMA φMSχMA + φMAχMS 1

2 8 16

A×M φAχMA φAχMS
1
2 1 2

Fig. 15.3 Baryon multiplets
as a function of total angular
momentum L and band
number N in the harmonic
oscillator model [5]

one spin- 3
2 singlet and one spin- 1

2 octet [4, 5]:

φAχS (s = 3

2
singlet) and

1√
2
[φMSχMA−φMAχMS] (s = 1

2
octet). (15.16)

Figure 15.3 shows the distributions of the SU(6) supermultiplets in the harmonic
oscillator model, as a function ofL andN . To summarize, the SU(6) supermultiplets
decompose into the following SU(3) multiplets:

56 : s = 1

2
octet, s = 3

2
decuplet,

70 : s = 1

2
decuplet, s = 3

2
octet, s = 1

2
octet, s = 1

2
singlet,

20 : s = 3

2
singlet, s = 1

2
octet. (15.17)
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15.2 Experimental Status

Baryon excitations have been studied using various reactions such as π±p andK−p
elastic and inelastic scattering (e.g. π−p → nπ0, nη, n2π0, K−p → �π0, �η,
�0π0) and photoproduction (such as γp → pππ ,K+�,K0�+). For experimental
and theoretical details we refer to the comprehensive review [6]. Table 15.3 lists the
firmly established octet and singlet baryons up to the N = 2 band, Table 15.4 the
decuplet ones [7]. Further states that need to be confirmed are not included here but
are listed in [8]. Most states up to theN = 1 band have been observed. There is so far
no established candidate in the 20-plet. The number of predicted baryon excitations
exceeds by far the number of states observed. This could be due to the fact that
many resonances do not couple strongly to pion-nucleon or kaon-nucleon. They are
therefore only weakly produced with pion and kaon beams and, with increasing
masses, decay into a multitude of kinematically open final states. As is the case
for mesons, the density of overlapping excitations increases with mass and width,
which complicates the data analysis.

There are also mass ordering issues. For example, the N(1440) (also known as
Roper resonance) is an N = 2 state in the harmonic oscillator model and is the first
radial excitation of the nucleon. According to (15.9) this state should lie above, not
below, the N = 1 N(1535) state. The Roper resonance could be more complex than
qqq , for instance consisting of a quark core surrounded by a meson cloud that would
reduce its mass substantially [9].

The mass splitting between the 1
2
−
N(1535) and the 3

2
−
N(1520), presumably

due spin-orbit forces, is tiny (and has the opposite sign) compared to that between

Table 15.3 Quark model assignments of the established baryon octet and singlet states in the
N ≤ 2 bands

Octet [MeV] Singlet [MeV]

JP SU(6) L N s N � �  �

1
2

+
56 0 0 1

2 939 1116 1193 1318 –
1
2

−
70 1 1 1

2 1535 1670 1620a 1405
3
2

−
70 1 1 1

2 1520 1690 1670 1820 1520
1
2

−
70 1 1 3

2 1650 1800 1750a –
3
2

−
70 1 1 3

2 1700 1940a –
5
2

−
70 1 1 3

2 1675 1830 1775 1950a –
1
2

+
56 0 2 1

2 1440 1600 1660 1690a –
3
2

+
56 2 2 1

2 1720 1890 –
5
2

+
56 2 2 1

2 1680 1820 1915 2030 –
1
2

+
70 0 2 1

2 1710 1810 1880 1810a

Empty slots: not observed or not established yet
aFor alternative assignments see [7]
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Table 15.4 Quark model
assignments of the
established baryon decuplets

JP SU(6) L N s  �  �
3
2

+
56 0 0 3

2 1232 1385 1530 1672
1
2

−
70 1 1 1

2 1620 1750a

3
2

−
70 1 1 1

2 1700
3
2

+
56 0 2 3

2 1600 1690a

5
2

+
56 2 2 3

2 1905
7
2

+
56 2 2 1

2 1950 2030

aAlternative assignments have been proposed (see [7])

Fig. 15.4 Left: invariant �+π−π+ mass distribution in the reaction K−p → �+π−π+π−,
showing the production of the �(1670)+. Right: �+π− mass distribution after having applied
a cut around the �(1670)+ peak. The curve describes the �ππ phase space distribution in
�(1670) decay. The small peak around 1500 MeV is due to the contribution from �(1750) →
�(1520)π [10]

the�(1520) and the�(1405), which have the same configurations, but a light quark
substituted by an s quark.

The 1
2
−
�(1405) is much lighter than its N(1535) partner, notwithstanding

its s quark content. The threshold for coupling to K−p lies at 1432 MeV, hence
K−p decay is kinematically forbidden and �(1405) decays exclusively into �π .
Figure 15.4 shows invariant mass plots from the process K−p → �+π−π+π−
measured in a bubble chamber with 4.2 GeV/c kaons [10]. The reaction proceeds
through the production of the �(1670)+, which in turn decays into �(1405)π+.
The asymmetric �(1405) → �+π− distribution in Fig. 15.4 (right) is due to
the opening of the K−p decay channel at 1432 MeV. The nearby K−p threshold
leads to significant mass shifts compared to the quark model prediction (akin to
the a0(980) meson discussed in Fig. 12.2). The nature of the �(1405) has been
controversial for many years and is still not settled. It could consist of a boundK−p
(or qqqqq) state mixed with a genuine qqq baryon, see e.g. [11].
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15.3 Colour Hyperfine Splitting

Before closing this chapter let us examine how colour hyperfine splitting affects the
baryon masses, in particular those of the ground states. Let us write the hyperfine
interaction mediated by gluon exchange between two quarks in a baryon (or between
the quark and antiquark in a meson) as

H = −c ( �G1 · �G2)(�s1 · �s2). (15.18)

This ansatz is inspired by the spin-spin interaction (9.18) in QED and will be
justified experimentally below. The operators �s1 and �s2 are the three generators of
SU(2) and �G 1 and �G 2 the eight SU(3) generators (7.4) for quark 1 and quark 2,
respectively. Let us now compute the expectation value 〈H 〉. For two quarks

〈�s1 · �s2〉 = 1

2
〈�s 2 − �s 2

1 − �s 2
1 〉 =

(− 3
4

1
4

)
for

(
s = 0
s = 1

)
, (15.19)

and similarly

〈 �G1 · �G2〉 = 1

2
〈 �G 2 − �G1

2 − �G2
2〉. (15.20)

The expectation values 〈 �G 2〉 are computed in Appendix E. Let us deal first with
mesons by using SU(3)c. Since qq states are colour singlets and quarks or antiquarks
colour triplets we have for the expectation values (see Table E.1 in Appendix E)

〈 �G 2〉 = 0, 〈 �G1
2〉 = 〈 �G2

2〉 = 4

3
, (15.21)

and thus

〈 �G1 · �G2〉 = −4

3
. (15.22)

The energy levels between s = 0 an 1 are split by 4c
3 :

〈H 〉 = −c
(− 3

4
1
4

)[
−4

3

]
=
(−c

c
3

)
for

(
s = 0
s = 1

)
. (15.23)

Taking for the ground states the masses of the π and the ρ mesons one finds that c
is positive and roughly equal to 480 MeV.

We now repeat the calculation for the ground state baryons. From (15.18)

〈H 〉 = −c(〈 �G1 · �G2〉〈�s1 · �s2〉 + 〈 �G1 · �G3〉〈�s1 · �s3〉 + 〈 �G2 · �G3〉〈�s2 · �s3〉). (15.24)
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We use (15.20) to evaluate the pairs 〈 �Gi · �Gj 〉. However, according to (10.12, 10.13)
each pair must couple to 3∗ in order to obtain with the third quark a colour singlet
qqq state. Hence 〈 �G 2〉 = 4

3 from Table E.1 and we obtain

〈 �Gi · �Gj 〉 = 1

2

(
−4

3

)
= −2

3
. (15.25)

The spin contribution gives

〈�s1 · �s2 + �s1 · �s3 + �s2 · �s3〉 = 1

2
〈�s 2 − �s 2

1 − �s 2
1 − �s 2

3 〉 = 1

2

⎛
⎝

1
2 · 3

2 − 3 · 1
2 · 3

2

3
2 · 5

2 − 3 · 1
2 · 3

2

⎞
⎠

=
⎛
⎝

− 3
4

3
4

⎞
⎠ for

⎛
⎝
s = 1

2

s = 3
2

⎞
⎠ . (15.26)

Finally one gets with (15.25) the splitting

〈H 〉 = c

(
2

3

)⎛
⎝

− 3
4

3
4

⎞
⎠ = c

⎛
⎝

− 1
2

1
2

⎞
⎠ for

⎛
⎝
s = 1

2

s = 3
2

⎞
⎠ . (15.27)

One predicts an average splitting c ∼ 480 MeV between the spin- 3
2 and 1

2 ground
state baryons, less than that between the s = 0 and 1 mesons. Note that without
〈 �Gi · �Gj 〉 colour interaction the spin- 3

2 baryons would be lighter than the spin- 1
2

ones!
The physics of excited baryons is still an area of work for the future. Paraphrasing

Ref. [6] one can state that “the underlying mechanisms leading to baryon excitations
are not (fully) understood”.
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Chapter 16
Multiquark States

A new hadron spectroscopy has emerged, in particular in the heavy quark sector,
with the experimental evidence for “exotic” states that cannot (or cannot easily)
be accommodated as qq mesons or qqq baryons. This chapter deals with some of
these hadrons that have been reported recently by several experiments, the nature
of which is highly controversial and currently under vivid discussion (some of them
might not withstand the test of time). The next two sections deal with tetraquarks
and pentaquarks. Some of these states may be molecular structures made of pairs of
mesons such asD,Ds andD∗,D∗

s excitations, or their B and B∗ counterparts. They
could also be mimicked by kinematical effects. For recent reviews and references
see [1, 2, 3, 4].

16.1 Light Tetraquark

A tetraquark is a compact colour neutral object made of a diquark-antidiquark pair
q1q2q3q4. Let us deal first with the light ones containing only u, d and s quarks. By
copying the SU(3)c colour decomposition (10.15) one obtains the SU(3)f multiplets

3 × 3 × 3∗ × 3∗ = 3 × 3∗
︸ ︷︷ ︸

9

+ 6 × 6∗
︸ ︷︷ ︸

36

+ 3 × 6︸ ︷︷ ︸
18

+ 3∗ × 6∗
︸ ︷︷ ︸

18∗
. (16.1)

With the constituent mass mu = md � 350 MeV the lightest tetraquark would
lie in the 1400 MeV mass region, and the ones with one or more s quarks would
be heavier. However, one needs to take into account the colour hyperfine splitting
induced by gluon exchange that was introduced in Sect. 15.3. Recall the colour
interaction between two quarks given by (15.18):

H = −c ( �G1 · �G2)(�s1 · �s2), (16.2)
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with c � 480 MeV and 〈�s1 · �s2〉 = − 3
4

(
1
4

)
for s = 0 (1). On the other hand,

〈 �G1 · �G2〉 = 1

2
〈 �G 2 − �G1

2 − �G2
2〉

= 1

2

(
4

3
− 2 × 4

3

)
= −2

3
for 3 and 3∗ (16.3)

see (15.25), and

〈 �G1 · �G2〉 = 1

2

(
10

3
− 2 × 4

3

)
= +1

3
for 6 and 6∗, (16.4)

with Table E.1 in Appendix E. Let us discuss the ground states in which all angular
momenta vanish. The wavefunction of the diquark needs to be antisymmetric when
taking into account the spin, flavour and colour components. For s = 0 the spin
function is antisymmetric (A) and for s = 1 symmetric (S). With three quarks there
are 6 symmetric (S) flavour wavefunctions and 3 antisymmetric (A) ones, which
correspond to the 6 and 3∗ representations of SU(3)f :

S (6 ) : 1√
2
(ud + du), 1√

2
(us + su), 1√

2
(ds + sd), uu, dd, ss, (16.5)

A (3∗) : 1√
2
(ud − du), 1√

2
(us − su), 1√

2
(ds − sd). (16.6)

The same reasoning applies to SU(3)c (replace u, d , s by R, G, B) and to the
antidiquark (6∗ and 3 representations). The corresponding SU(3)f weight diagrams
of 3∗ and 3 are depicted in Fig. 16.1a, those for 6 and 6∗ in Fig. 16.2.

Fig. 16.1 (a) Weight diagrams of the 3∗ and 3 representations of SU(3)f for diquarks and
antidiquarks, respectively; (b) scalar nonet of the lightest tetraquark configuration (see the text)
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Fig. 16.2 Weight diagrams
of the 6 and 6∗
representations of SU(3)f for
diquarks and antidiquarks,
respectively

Table 16.1 Antisymmetric combinations of spin, flavour and colour of the qq and qq pairs

Symmetry qq qq

Spin, flavour, colour s Flavour Colour Flavour Colour 〈H 〉
ASS 0 6 6 6∗ 6∗ c

4

SAS 1 3∗ 6 3 6∗ − c
12

SSA 1 6 3∗ 6∗ 3 c
6

AAA 0 3∗ 3∗ 3 3 − c
2

Table 16.2 Ground state
(L = 0) tetraquark flavour
multiplets and colour
hyperfine splitting (HfS)

(qq)(qq) J P Multiplet HfS

(ASS)(ASS) 0+ 36 c
2

(ASS)(SAS) 1+ 18 c
6

(SAS)(ASS) 1+ 18∗ c
6

(SAS)(SAS) 0, 1, 2+ 9 − c
6

(SSA)(SSA) 0, 1, 2+ 36 c
3

(SSA)(AAA) 1+ 18 − c
3

(AAA)(SSA) 1+ 18∗ − c
3

(AAA)(AAA) 0+ 9 −c
The M-type states are listed in the top half, the
T-type ones in the bottom half

The four possible diquark and antidiquark fully antisymmetric configurations are
listed in Table 16.1. The expectation values of the operator (16.2) are listed in the
last column. For example, for the ASS configuration

〈�s1 · �s2〉 = −3

4
, 〈 �G1 · �G2〉 = 1

3
(16.7)

with (16.4), and therefore

〈H 〉 = c

4
. (16.8)

Finally, the total tetraquark wavefunction is a colour singlet, hence only the 3∗
c × 3c

(T-type, see Fig. 10.4) and 6c × 6∗
c (M-type) configurations are kept. Table 16.2

lists the possible combinations, the multiplet dimensions and the hyperfine splitting
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〈H(qq)〉 + 〈H(qq)〉. Without angular momentum the tetraquarks can have spin j =
0, 1 or 2, depending on the diquark spins. The parity is positive.

The most remarkable prediction is the existence of a light tetraquark scalar nonet
(last line in Table 16.2) which would lie roughly in the mass region 4mu − c �
920 MeV. The low-lying scalar mesons shown in Table 11.1 could be the members
of this nonet:

a0(980) = (usds,
1√
2
[uu− dd]ss, usds),

f0(980) = 1√
2
[uu+ dd]ss,

f0(500) = udud,

K∗
0 (700) = (sdud, suud) and (udus, udds), (16.9)

with weight diagram depicted in Fig. 16.1b. These assignments have been proposed
a long time ago [5]. The ss component in the wavefunctions of the a0(980) and
f0(980) must be large since they strongly couple to the KK̄ channel, yet lying
below KK̄ threshold. The latter strongly modifies the resonance parameters which
are observed in the ηπ and ππ mass distributions, respectively, shifting the masses
and reducing the widths (Chap. 12). Kaon-antikaon molecular states have also been
suggested [6] as well as tetraquark cores surrounded by virtualKK clouds [7]. The
branching ratios for the radiative decays φ → γf0(980) → γπ0π0 and φ →
γ a0(980) → γπ0η also argue in favour of four-quark structures for the f0 and a0
[8].

Doubly charged tetraquarks are also predicted, such as uudd which occurs in
the 36-dimensional representations, see (16.5). The large number of higher lying
tetraquark states predicted in Table 16.2 are expected to be broad [5], which might
explain why no obvious candidate has been reported so far.

16.2 Heavy Tetraquark

Some 20 mesons in the charmonium spectrum, which are hard (or impossible)
to interpret as cc states, have been observed at e+e− and high energy hadronic
colliders [9], several of them needing experimental confirmation. Figure 16.3 shows
the established ones together with the known cc mesons.

The most prominent candidate is theX(3872) established by several experiments
at e+e−, pp and pp colliders. This state had in fact been spotted long before in high
energy πN data [10]. Figure 16.4a shows the J/ψ π+π− invariant mass from Belle
in B+ → K+J/ψ π+π−, where the J/ψ decays into e+e− or μ+μ− pairs. The
B mesons were produced in e+e− collisions at the ϒ(4S) [11]. Figure 16.4b shows
the signal observed by CDF at the Fermilab Tevatron running at the pp collision
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Fig. 16.3 States populating the charmonium spectrum that have been established so far [9]. The
cc states are shown in black (see also Fig. 9.4), the exotic ones are tagged by stars. The quantum
numbers of the two states on the right are not firmly established. The X(3872) [now called
χc1(3872) according to the nomenclature in Table 4.1], X(4140) [or χc1(4140)], X(4260, 4360)
[or ψ(4260, 4360)], X(3900)± [or Zc1(3900)±] and X(4430)± [or Zc1(4430)±] are discussed in
the text; † i = 1 meson, the C parity is not defined but attributed from that of the neutral partner

energy of 1.96 TeV, where the J/ψ decays into μ+μ− pairs. Figure 16.4c shows
the signal also observed by CMS in pp collisions at 7 TeV.

The mass of theX(3872) is 3871.7 ± 0.2 MeV and its width is less than 1.2 MeV.
Its quantum numbers have been determined by CDF to be either JPC = 1++ or
2−+, from the correlation between the planes spanned by the π+π− and μ+μ−
pairs and their angular distributions [14]. The 1++ assignment was then firmly
established by LHCb [15]. Since the X(3872) ≡ χc1(3872) decays into J/ψ it
should contain cc pairs and could be either a cc state or a tetraquark (Fig. 16.5).

The X(3872) could be the missing 23P1 charmonium state χc1(2P) (Fig. 9.4).
However, the latter is expected to lie about 100 MeV higher in mass [16]. On the

other hand, the X(3872) lies at theD0D
∗0

threshold (3871.7 MeV), which suggests
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Fig. 16.4 Observation of the X(3872) → J/ψ π+π−; (a) by Belle in B+ → K+J/ψ π+π−
(including the charge conjugated B− decay) [11]; (b) by CDF, the strong peak at 3686 MeV stems
from the ψ(2S), the bottom distribution shows the wrong charge combinations J/ψ π±π± [12];
(c) by CMS, the top blue curve is the fit, the bottom dotted red curve is the background subtracted
signal (enhanced in the inset) [13]

Fig. 16.5 The X(3872) as a charmonium meson (left) or a tetraquark (right)

Fig. 16.6 The X(3872) as a loosely bound DD
∗

system similar to the deuteron

a weakly bound D0D
∗0

“molecule” bound by one pion exchange (Fig. 16.6). The
existence of such a state was predicted many years ago in analogy to the weakly
bound deuteron [17]. Indeed, a DD

∗
mass enhancement is observed at threshold

by Belle in B decays [18]. One also expects the D+D∗−
decay (threshold at

3879.8 MeV), which with D0D
∗0

leads to i = 0 and i = 1 isospin mixing
(analogous to the KK or KK

∗
systems, see (6.45)), leading to signals in J/ψ ρ

and J/ψ ω, which have both been observed [9]. Note that a molecular structure is
of the type (cq)(cq), in contrast to the cqcq tetraquark which is a more compact
system. The latter is perhaps unlikely for the X(3872), since the charged partner
(e.g. cucd) has so far not been observed.
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Fig. 16.7 Observation of theZc1(4430)± ; (a) π+ψ(2S) vs. π+K Dalitz plot inB → Kπ+ψ(2S)
from Belle [19]; (b) π+ψ(2S)mass projection with fit excluding theK∗ band. The dark (blue) area
shows the excluded K∗ contribution; (c) m2(π−ψ(2S)) projection in B0 → K+π−ψ(2S) from
LHCb. The strong peak around 20 GeV2 (with contribution shown by the blue bottom distribution)
is due to the Z−

c1(4430). A possible additional resonance around 4200 MeV is also suggested [20]

Fig. 16.8 Left: cross section for e+e− → J/ψ π+π− measured by BESIII as a function of energy
with fits (for details see [21]). Right: decay of the X(4260) into Zc1(3900)±π∓ with fits. The
histogram shows the background contribution estimated from the J/ψ sidebands [22]

States decaying into charmonium and a charged pion cannot be pure cc states,
but must contain both cc and charged qq ′ pairs. Figure 16.7a shows the first
observation of a charged state by Belle, containing both cc and charged qq′ pairs,
and decaying into π±ψ(2S). The state is produced in B decay into Kπ±ψ(2S)
with ψ(2S) → J/ψ π+π− or ψ(2S) → lepton-antilepton pairs [19]. The strong
vertical band stems from the K∗ background. The horizontal red arrow shows a
faint signal which is enhanced in the π±ψ(2S) projection when applying a K∗ cut
(Fig. 16.7b). The LHCb collaboration has confirmed this charged state in the channel
B0 → K+π−ψ(2S) (Fig. 16.7c) and has determined its spin and parity to be 1+
[20]. The π0ψ(2S) decay mode is also expected, hence C = −1 is assumed.

Figure 16.8 (left) shows the cross section for e+e− → J/ψ π+π− measured
with the BESIII detector (see Fig. 9.5) as a function of collision energy. Two states
are observed at 4260 and 4360 MeV, assumed to have the quantum numbers 1−−
(since they are produced in e+e− collisions), in a region where no charmonium
state is expected. These mesons have been seen earlier in e+e− → γ J/ψ π+π−
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Fig. 16.9 J/ψ φ invariant mass in B+ → J/ψ φK+. The top (red) histogram is the total fit. The
individual contributions to the peaks and from background are also shown [24]

and γψ(2S)π+π− [9], where the γ is emitted by one of the incident leptons (initial
state radiation, ISR) [23]. TheX(4260) then decays into a charged meson containing
both cc and charged qq′ pairs, the Zc1(3900)± (→ J/ψπ±) π∓ (Fig. 16.8 right).

Figure 16.9 shows the invariant mass distribution of J/ψ φ events measured by
LHCb at 7 and 8 TeV in B+ → J/ψ φK+, where J/ψ → μ+μ− and φ →
K+K− [24]. Four structures are observed and their quantum numbers determined.
The J/ψ φ decay mode points to a structure containing four quarks c, c, s and s.
The two lower states have JPC = 1++ and the two upper ones JPC = 0++. The
lowest one at 4140 MeV had been reported before at the Tevatron and by CMS, who
may have also observed the one at 4274 MeV [25]. So far, only the 4140 MeV state
is considered to be well established with a mass of 4146.8 ± 2.4 MeV and a rather
narrow width of 22 ± 8 MeV [9].

States have also been reported that do not fit in the traditional bottomonium
spectrum shown in Fig. 9.6. Two (10–20 MeV) narrow JP = 1+ charged mesons,
Zb1(10610)± and Zb1(10650)± have been observed by Belle in the decay of the
radial excitation ϒ(5S):

ϒ(5S) → Zb1(10610)±π∓, Zb1(10650)±π∓,

with Zb1(10610)± → [ϒ(1S),ϒ(2S),ϒ(3S)]π±,

and Zb1(10650)± → [ϒ(1S),ϒ(2S),ϒ(3S)]π±, (16.10)

where ϒ(1S, 2S, 3S) → μ+μ− [26]. The decays into hb(1P, 2P)π± have also
been observed. The ϒ(nS)π± mass distributions are shown in Fig. 16.10. The
angular distributions of the charged pions favour the quantum numbers JP = 1+.
The Z0

b1π
0 decay modes are also expected, hence C = −1 is assumed for the Zb1.

Again, the charged mesons cannot be charmonium states. Since they both lie very
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Fig. 16.10 ϒ(nS)π± invariant mass spectrum inϒ(5S) → ϒ(nS)π+π− decay; from left to right
n = 1, 2 and 3 [26]

close to the B∗B and B∗B∗
thresholds (10,604.6 and 10,650.2 MeV), they could be

two-meson molecular states.

16.3 Pentaquark

The pentaquark is a conjectural baryon made of four quarks and one antiquark which
form a colour singlet, see (10.16). These states have been sought for many years
by looking for hyperons with the wrong strangeness sign S = +1, e.g. decaying
into nK+ or pKS associated with the production of an S = −1 hyperon. Several
candidates with masses between 1780 and 2500 MeV had been reported in the
seventies from analyses of the K+p cross section, which were later not confirmed
(for a review see [27]). Pentaquark states were again reported at the turn of the
century. A baryon with putative uuddc quark content, the !c(3100), was observed
to decay into D∗−p. Another candidate, the doubly charged�(1680) was reported
to decay into  −π−(ssddu).

The most prominent one was the!(1540)+ with quark content uudds, emitting
an S = +1 kaon. Figure 16.11a, b show for example the K−n and K+n invariant
mass spectra obtained in photoproduction at the SPring-8 facility in Japan, γ n →
K+K−n [28]. The incident photon (of typically 2 GeV) was produced by backward
scattering laser photons off 8 GeV electrons. A CH scintillator was used as the
neutron target. The outgoing neutron was not observed, but the contribution from
γp → K+K−p was vetoed by detecting the emitted proton. While there is
no prominent structure in Fig. 16.11a, a narrow peak is observed in the “wrong”
strangeness mass distribution 16.11b. The significance of the signal was estimated
to be about 4.6σ (standard deviations, close to the 5σ required to claim a discovery
by today’s standards). An even stronger signal was reported in K+n → K0p

from a xenon bubble chamber, published only recently [30]. Several collaborations
had also claimed evidence for the !(1540)+, to be rebutted by many others [31].
For example, Fig. 16.11c shows the negative result of the high statistics CLAS
experiment at Jefferson Lab in γ d → pK−K+n.
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Fig. 16.11 (a) K−n mass distribution in γn → K+K−n (full histogram). The dotted histogram
shows the mass distribution when using hydrogen as a target. The peak is due to the reaction
γp → K+K−p, where the intermediate �(1520) decays into K−p [28]; (b) K+n mass showing
the positive strangeness baryon candidate !(1540)+ [28]; (c) theK+n mass distribution in γd →
pK−K+n does not show any signal [29]

Fig. 16.12 Left: �0
b decay into�∗ excitations. Right: production of the pentaquark baryon P+

c

None of these pentaquark states seem to have survived more detailed investiga-
tions. However, evidence for two heavy pentaquark states in �0

b decay have been
presented by the LHCb collaboration in pp collisions at 7 and 8 TeV [32]. The
branching fraction for �0

b → K−J/ψ p is only 3×10−4. However, sufficient and
clean data can be collected by triggering on μ+μ− pairs from J/ψ decay and by
reconstructing the �0

b decay vertex, which is displaced from the pp collision point
by several millimeters. The Feynman diagrams contributing to �0

b → K−J/ψ p
are displayed in Fig. 16.12. The weak process b → c leads to several intermediate
�∗ resonances decaying intoK−p (left), but could also contribute to the production
of pentaquarks P+

c with quark content ducuc, decaying into J/ψ p (right).
Figure 16.13 (left) shows the Dalitz plot of the decay �0

b → K−J/ψ p
(including the charge conjugate �

0
b → K+J/ψ p) in which a band is visible

around the (J/ψ)p squared mass of 20 GeV2. The signal is even more striking in the
(J/ψ)p mass projection, Fig. 16.13 (right). An amplitude analysis was performed,
leading to the presence of two resonances [32], the narrow P+

c (4450) with width
� 40 MeV and the broad P+

c (4380) with width � 200 MeV. The quantum numbers
could not be assigned unambiguously: j = 1

2 for one of the two states and 3
2 with

opposite parity for the other.
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Fig. 16.13 Dalitz plot (left) and J/ψ p mass projection (right) of the decay �0
b → K−J/ψ p

from LHCb. The red arrow on the left shows the enhancement at a mass of about 4.5 GeV. The
black squares on the right show the data, the red dots the fit. The bottom distributions represent the
fitted contribution from the many �∗ decay channels. The contributions from the two pentaquark
candidates at 4380 and 4450 MeV are shown by the hatched areas [32]

The nature of these states—pentaquarks, molecules, or less mundane kinematic
effects—remains to be clarified (for a review see [33]). Worth noting are several

nearby thresholds such as �∗+
c D

0
(4382 MeV) and �∗+

c D
0

(4457 MeV). These
pentaquarks qualify as molecular states made of heavy baryons, weakly bound
to heavy mesons. A triangle singularity involving the nearby pχc1 threshold
(4449 MeV) was also invoked: �0

b → �∗(→ K−p)χc1 followed by rescattering,
pχc1 → P+

c → pJ/ψ [34].
These pentaquarks have been seen so far by one experiment in one decay

channel only, and therefore need confirmation. They could be produced directly as
resonances in π−p → J/ψ n [35] or in photoproduction with the inverse reaction
(γ ⇒ J/ψ)p → P+

c [36], where the J/ψ is one of the hadronic components of
the incident photon (cc in addition to uu, dd and ss, see Fig. 7.7).
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Chapter 17
Heavy Baryons

We have introduced the nomenclature in Chap. 13: the � is an isoscalar and the �
and isovector baryon with one heavy (s, c or b) quark. The  contains two and the
� three heavy quarks. The number of c or b quarks is indicated by the subscripts c
or b. Hyperons are baryons with at least one s quark. Many baryons containing c or
b quarks have been identified (Table 1.2).

17.1 Charmed Baryons

With the additive charm quantum number C baryons can be classified in a
3-dimensional representation in terms of the three coordinates (i3, S, C), or alter-
natively (i3, y, C). Although flavour symmetry is badly broken with the much
heavier c quark (and even more so with the b quark), the SU(4)f representation
is still useful for classification/inventory purposes. With four quarks the 64 possible
configurations decompose into

4 × 4 × 4 = 4∗ + 20 + 20 + 20 (17.1)

(Problem 17.1). Figure 17.1 shows the weight diagrams. There is one flavour
symmetric 20-plet associated with spin- 3

2 baryons, which contains the charmless
SU(3)f decuplet at its bottom. The two other 20-plets correspond to the mixed
symmetric and mixed antisymmetric flavour wavefunctions of spin- 1

2 baryons, in
which one recognizes the charmless octet baryons at the bottom (Fig. 17.1, right).
Note that there are two dsc and two usc spin- 1

2 states, labelled  0
c ,  

′
c

0 and  +
c ,

 ′+
c , respectively. This is because one of the qq pairs can have spin 1 (symmetric)

or spin 0 (antisymmetric), leading both to j = 1
2 with the third quark. The C = 1

level forms with two among the u, d , s quarks a sextet 6 for s = 1 and a triplet
3∗ of SU(3)f for s = 0. These are the colour configurations 3∗ SSA and AAA of
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Fig. 17.1 SU(4)f multiplets of the ground state spin- 3
2 and 1

2 baryons including the c quark. The
hypercharge is defined as y = B + S − C

3 [1]

Fig. 17.2 The multiplet of the C = 1 spin- 1
2 baryons in Fig. 17.1 splits into a 6 and a 3∗

Table 16.1 to combine with a coloured charm quark. The diquark wavefunctions
are given by (16.5) and (16.6) and the corresponding weight diagrams are found in
Figs. 16.2a and 16.1a, respectively, to which a c quark is added with i3 = y = 0.
Figure 17.2 shows the resulting weight diagrams of the spin- 1

2 singly charmed
baryons. The quadruplet in (17.1) does not exist in the ground state but is realized
for L = 1 excitations. Figure 17.3 shows the 4∗ weight diagram, conjugate to the
fundamental one in Fig. 8.11, with the experimentally observed states.

The C = 1 baryons have all been observed. Table 17.1 lists those with established
quantum numbers and their main decay modes. The parity of the�+

c is that of the c
quark, defined as positive. Spin and parity have not been determined experimentally
for most of the states. They follow the ordering and expectation from the quark
model.
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Fig. 17.3 The first orbital
excitations contain a
quadruplet of s = 1

2 baryons

with four JP = 1
2

−
and four

3
2

−
baryons. The charmed

ones are the partners of the
L = 1 SU(3)f singlets listed
in Table 15.3

Table 17.1 C = 1 baryons with established JP and main decay modes [2]

�c[2286] 1
2

+
c → s, e.g. pKπ(π),�π(π),�π(π),��ν� . . . +

�c(2455) 1
2

+
�+
c π ++, +, 0

 c[2469] 1
2

+
c → s, e.g.  + π ′s +, 0

 ′
c(2578) 1

2
+

 cγ +, 0

�c[2695] 1
2

+
c → s, e.g.  Kπ,�− + pions . . . 0

�c(2520) 3
2

+
�+
c π ++, +, 0

 c(2645) 3
2

+
 cπ +, 0

�c(2770) 3
2

+
�0
cγ 0

�c(2595) 1
2

−
�cπ(π) +

�c(2625) 3
2

−
�+
c π

+π− +

 c(2790) 1
2

−
 cπ, 

′
cπ +, 0

 c(2815) 3
2

−
 cπ, cππ +, 0

The electric charges are given in the last column. There are 9 spin- 1
2 and 6 spin- 3

2 baryons. The
masses of the “stable” (weakly decaying) baryons is given in square brackets. A stable�c does not
exist. Note the spin- 1

2 �
0
c . The bottom part lists the first excited quadruplet states

Figure 17.4 (left) shows the first experimental hint of a charmed baryon. The
neutrino induced reaction

νμp → μ−�(→ π−p)π+π+π−π+ (17.2)

was observed at BNL in a bubble chamber exposed to a muon-neutrino beam
[3]. The hadronic electric charge increases from +1 to +2, while the strangeness



208 17 Heavy Baryons

Fig. 17.4 Left: bubble chamber picture of the reaction νμp → μ−�π+π+π−π+ with � →
π−p (adapted from [3]). One of the two tracks labelled π− or μ− is the negative muon induced
by the νμ. The loop is due to the decay chain π+ → μ+ → e+. Right: observation of the (udc)

�+
c decaying into�π+π−π− in a broadband photon beam [4]

decreases by one unit, thus seemingly violating the S = Q rule for reactions
involving leptons. The conundrum was solved by the observation at Fermilab of the

�+
c (in fact, this was the charge conjugate�+

c shown in Fig. 17.4, right). The (cuu)
�c(2455)++ which was discovered later decays into π+�+

c , hence reaction (17.2)
proceeds through the intermediate state

νμp → μ−�c(2455)++ (17.3)

which does not involve any strange quark and fulfils the C = Q rule, followed
by

�c(2455)++ → �+
c π

+ → �π+π+π−π+. (17.4)

Figure 17.5a shows the Q = +1 (cud) partner, the �c(2455)+ and the first
observation of the�c(2520)+ by the CLEO collaboration (a sketch of the CLEO III
detector is shown in Fig. 9.7). The two states were produced in e+e− collisions at
or below the ϒ(4S). They decay almost exclusively into �+

c π
0. Up to 15 different

�+
c decay modes were included to increase the data sample. The spin 1

2 has been
assigned to the �c(2455) by the BaBar collaboration by studying the decay B− →
�c(2455)0 p with �c(2455)0 → �+

c π
− (Fig. 17.5b).

The spin- 1
2 �

0
c is our next example of a charmed hyperon. Figure 17.6a shows

the result of a high statistics sample collected by Belle running at or around the
ϒ(4S). The �− was first reconstructed in its �K− decay (inset). The �0

c appears
as a strong peak when the �− is combined with a positive pion, while the wrong
charge combination (with a negative pion) does not show any signal (Fig. 17.6b).
The �c(2770)0 decaying radiatively into �0

c was also observed in this experiment
[7].
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Fig. 17.5 (a) �c(2455)+ and �c(2520)+ decay into �+
c π

0 [5]; (b) the angular distribution

between the antiproton and the �+
c in B− → (�c(2455)0 → �+

c π
−) p favours spin 1

2
+

for
the �c(2455), in agreement with the quark model [6]

Fig. 17.6 (a) Measured invariant mass distributionM(�−π+) with 725 events.M(�−π+) refers
to the reconstructed mass and m(�−) to the tabulated �− mass. The dotted histogram is the
contribution from the side bands around the�− → �K− signal shown in the inset (33,880 events);
(b) the wrong charge distributionM(�−π−) does not show any signal (adapted from [7])

Two of the three spin- 1
2 doubly charmed baryons in Fig. 17.1 have been reported,

the  +
cc [8] and the  ++

cc [9]. The former was seen by SELEX at Fermilab in the
�+
c K

−π+ mass spectrum, using a high energy hyperon beam, the latter by LHCb
in the �+

c K
−π+π+ mass distribution in pp collisions at 13 TeV. Figure 17.7 (left)

shows a Feynman graph of the weakly decaying ++
cc and Fig. 17.7 (right) the mass

distribution. The �+
c was reconstructed from charged particles emerging from a

vertex clearly separated from the pp collision point. The SELEX and LHCb masses
lie in the predicted 3500–3700MeV mass range (see e.g. [10]). However, the  ++

c



210 17 Heavy Baryons

Fig. 17.7 Left: one of the Feynman graphs contributing to the decay of a ccu baryon into
�+
c K

−π+π+. Right: final state mass distribution and background substracted signal [9]

state lies about 100 MeV above the SELEX one, with a mass splitting far too large
for ucc and dcc isospin partners. The two states need to be confirmed by other
experiments before being firmly established.

17.2 Bottom Baryons

When replacing the c by a b quark one generates identical SU(4)f weight diagrams
for bottom baryons, as was done for mesons in Fig. 8.12. Figure 17.8 shows the
weight diagrams of bottom baryons projected onto the axis i3 − y plane.

Apart from the spin- 3
2 �

−
b the baryons with one b and two light (u, d , s) quarks

(B ′ = −1) have been detected (Table 17.2). The lightest bottom baryon, the �0
b

Fig. 17.8 SU(4)f multiplets of the ground state spin- 3
2 and 1

2 baryons including the b quark [11].

The hypercharge is defined as y = B + S + B ′
3 (q stands for u or d)
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Table 17.2 Established baryons with one b quark and main decay modes observed so far [2]

�b[5620] 1
2

+
b → c, e.g. �+

c �ν�X 0

�b(5811) 1
2

+
�0
bπ +, 0, −

 b(5793) 1
2

+
�0
bπ and b → c, e.g. J/ψ  ,pDK 0, −

 ′
b(5935) 1

2
+

 bπ 0, −
�−
b [6046] 1

2
+

b → c, e.g. J/ψ �−. . . −
�b(5832) 3

2
+

�0
bπ +, 0, −

 b(5950) 3
2

+
 bπ 0, −

�b(5912)0 1
2

−
�0
bππ 0

�b(5920)0 3
2

−
�0
bππ 0

The parity of the b quark is defined to be positive and so is that of the �0
b . The masses of weakly

decaying baryons are given in square brackets. The spin-parity assignments follow the quark model
and have not been established experimentally. The well-known first excited singlet states are also
listed

Fig. 17.9 (a) Search for the�b in itsD0pπ− decay mode [12]. The dashed peak shows the signal
that would be expected from a previous claim [13]; (b) observation in the J/ψ � decay mode. The
dark (orange) area is the background contribution (adapted from [14])

(udb) was first reported in 1981 at CERN’s Intersecting Storage Rings (ISR),
decaying into D0pπ−, but the discovery could not be reproduced by another ISR
experiment (Fig. 17.9a) [12]. The�0

b was later established in its J/ψ� decay mode
by the UA1 Collaboration at the CERN pp collider [14], with 16 ± 5 events above
background (Fig. 17.9b). The J/ψ was identified by μ+μ− pairs and the � by its
π−p decay mode.

The production of heavy baryons has now become almost routine at the LHC:
Fig. 17.10a shows a high statistics sample of �0

b decays into J/ψ � collected by
LHCb (6870 events). Although final states involving the J/ψ are not dominant
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Fig. 17.10 The �0
b,  

−
b and �−

b observed by LHCb in their J/ψ + hyperon decay modes [15]

Table 17.3 Mean lives of “stable” hyperons and heavy baryons [2]

M τ M τ M τ

[MeV] [ps] [MeV] [ps] [MeV] [ps]

� 1116 263 �+
c 2286 0.200 �0

b 5620 1.47

�+ 1189 80 – –

�− 1197 148 – –

 0 1315 290  +
c 2468 0.442  −

b 5793 1.56

 − 1322 164  0
c 2471 0.112  0

b 5792 1.46

�− 1672 82 �0
c 2695 0.268 �−

b 6046 1.57

(Table 17.2), the decay J/ψ → μ+μ− is a clean and convenient trigger to enhance
the fraction of heavy quark decays in the collected data sample. Figure 17.10b, c
show the signals of the  −

b and�−
b hyperons collected by LHCb, which have led to

more precise measurements of their masses and widths [15].
The mean lives of weakly decaying heavy baryons are listed in Table 17.3.

Bottom baryons (like bottom mesons) have longer mean lives than charmed baryons.
This is due to the Cabibbo favoured c → s transition, while the dominant b → t

coupling is kinematically suppressed.
Heavy hadrons can be separated from background in high energy colliders

thanks to their long mean lives, which lead to decay vertices well separated
from the beam-beam collision point. This is illustrated by the first observation
by CMS of the  b(5950)0, decaying into the  b(5793)−π+ [16]. The baryon
cascade  b(5793)− →  − → � → p can then be reconstructed by detecting
the secondary vertices that are well separated from the primary collision point
(Fig. 17.11a). High resolution position detectors located as close as possible to the
beam-beam interaction region are used in collider experiments. For example, the
CMS barrel pixel detector was the innermost device, consisting of three 53 cm long
cylindrical layers at about 4, 7 and 10 cm from the beam axis. The barrel detector
had 48 millions 150×100 μm2 silicon pixels with which the CMS tracker could
reconstruct particle trajectories with a resolution of σ �12 μm. Figure 17.11b shows
a photograph of a half shell pixel detector.

The  b(5793)− signal was enhanced by triggering on the J/ψ → μ+μ− decay
products. Figure 17.12a shows the  b(5793)− peak in the J/ψ  − invariant mass
and Fig. 17.12b the signal from the  b(5950)0 (21 events).
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Fig. 17.11 (a) Decay cascade  b(5950)0 → pπ+2π−J/ψ (→ μ+μ−); (b) the lightweight
(2.6 kg) half-shell CMS pixel detector (see the text) [17] (©SISSA Medialab Srl. Reproduced with
permission of IOP publishing. All rights reserved)

Fig. 17.12 (a) J/ψ(→ μ+μ−) − invariant mass distribution in pp collisions at 7 TeV with the
 b(5793)− signal. The open (red) squares show the background from events associated with a
wrong charge (positive) pion from  − decay; (b) observation of the  b(5950)0 decaying into
 −
b π

+. The dotted curve shows the background [16]

It is interesting to compare the mass splittings between strange baryons (S =
−1,−2, −3) with those in which one s quark is replaced by a c or b quark
(Fig. 17.13). It appears that the potential is only weakly flavour dependent, a feature
that we have already encountered for mesons bound by the gluon exchange potential
(Fig. 9.10). For example, the mass difference between the  b and the�b is roughly
the same as that between the  c and the �c, the mass splitting between the spin- 1

2
�b and the �b close to that between the spin- 1

2 �c and the �c. The spin- 3
2 states

are heavier than the spin- 1
2 ones, in agreement with expectations from the spin-spin

force.
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Fig. 17.13 Mass splittings of heavy baryons. The mass differences with respect to the ground
states do not depend strongly on the heavy quark flavour s, c or b

To conclude this section, let us consider the SU(5)f symmetry group with five
quarks. The 4-dimensional weight diagram cannot be drawn, but for baryons one
expects the decomposition (Problem 17.1)

5 × 5 × 5 = 10∗ + 40 + 40 + 35. (17.5)

The decuplet is not realized in the ground state. The two 40-plets have mixed
symmetry (s = 1

2 ) and the 35-plet is symmetric (s = 3
2 ). The charmed and bottom

SU(4)f multiplets contain 32 spin- 1
2 states (8 + 2 × 9 + 2 × 3) and 30 spin- 3

2 ones
(10 + 2 × 6 + 2 × 3 + 2). Thus 13 ground state baryons containing both b and c
quarks are predicted (8 spin- 1

2 and 5 spin- 3
2), yet to be discovered.
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Chapter 18
Decay Angular Distribution and Spin

A general method will be described to derive the angular distribution in the two-
body decay of a particle with spin. Rotations of systems with angular momenta
have already been introduced in Sect. 6.1. The operator

U = e+i �J · �χ (18.1)

transforms the wavefunction of a system with spin �J into the wavefunction
expressed in a new coordinate system rotated by the angle χ about the direction �χ .
This transformation is referred to as a passive rotation, in contrast to active rotations
in which the physical system itself is rotated in a fixed reference frame, in which
case the operator reads

U = e−i �J · �χ . (18.2)

The difference between passive and active rotations is illustrated in Fig. 18.1. Let us
consider a passive rotation with the three Euler angles α, β and γ from the initial
coordinate system �1 into the final system �4 (Fig. 18.2). Every rotation in the 3-
dimensional space can be expressed in terms of three successive rotations:

1. a rotation about z1 by the angle α (�1 → �2, i.e. x1 → x2, y1 → y2, z1 = z2);
2. a rotation about y2 by the angle β (�2 → �3, z2 → z3);
3. a rotation about z3 by the angle γ (�3 → �4).

These rotations are represented by the operator

U = eiJz3γ eiJy2βeiJz1α (18.3)
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Fig. 18.1 Rotation of the
CMS detector (a) by an active
rotation of −30◦ (b) in which
the original reference frame is
kept, or by a passive rotation
by +30◦ (c). The coordinates
x′ and y′ refer to the rotated
coordinate system. Note that
the white dot (red arrow) gets
the same coordinates after
either rotation (image credit
CERN)

Fig. 18.2 Passive rotations
of the coordinate system by
the three Euler angles α, β
and γ

acting on the angular momentum wavefunction. However, each of the three terms
operates in a different coordinate system. They can be expressed in �1 with the
usual transformation rule for operators, namely:

eiJz3γ = eiJy2β eiJz2γ e−iJy2β (�2 → �3),

eiJy2β = eiJz1α eiJy1β e−iJz1α (�1 → �2),

eiJz2γ = eiJz1α eiJz1γ e−iJz1α (�1 → �2). (18.4)

Substituting into (18.3) gives with the help of Fig. 18.3

U = eiJz1αeiJy1βeiJz1γ . (18.5)
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Fig. 18.3 Transformation of
the exponents of
operator (18.3) into (18.5)

Let us replace α by φ, the azimuthal angle of the new quantization axis and β by
θ its polar angle. The angle γ , which stands for a rotation around the quantization,
axis can be ignored as it is not observable. We also drop the subscript “1” and
express U = eiJzφeiJyθ as a matrix in the 2j + 1 dimensional space. As already
discussed in Sect. 6.1 this is done by expanding the exponential functions as Taylor
series and computing the matrix elements of the operators Jz and Jy .

The formalism most frequently used [1] is based on active rotations which are
represented by the operator e−iJz1αe−iJy1βe−iJz1γ . The conversion between passive
and active rotations is achieved by flipping the signs of the three Euler angles, hence
θ → −θ and φ → −φ. For instance, by using the Pauli matrices in (6.5) for j = 1

2 ,
one gets for the matrix representation of e−iJyθ , see (6.7),

〈m|e−iJyθ |m′〉 =
(

cos θ2 − sin θ2
sin θ

2 cos θ2

)
≡ d

1
2
mm′(θ). (18.6)

The operator e−iJzφe−iJyθ is represented by a unitary matrix:

Dj
mm′(θ, φ) ≡

2j+1∑
n=1

〈m|e−iJzφ|n〉〈n|e−iJy θ |m′〉 = e−imφ dj
mm′(θ) , (18.7)

since the first matrix term is diagonal. Note that the first row and first column in
d
j

mm′ refer to the highest spin projection m = j , a convention that is not unique in
the literature. The d-matrices for j ≤ 2 are listed in Table 6.3. A passive rotation is
represented by the conjugate transposed matrix:

[Dj
mm′ (θ, φ)]∗T = Dj∗

m′m(θ, φ) = eimφ [dj
mm′ (θ)]T = eimφ dj

m′m(θ) = Dj
mm′ (−θ,−φ).

(18.8)

Indeed, dj
mm′(−θ) = d

j

m′m(θ), as can be verified directly from the explicit d-
matrices expressions or with formula (6.9).

Consider now the decay of particle A with spin j into two particles B and C
with spins s1 and s2, respectively. We choose the quantization axis z along the flight
direction of one of the daughters, say B (Fig. 18.4). Let M be the spin projection
of A along z. Such a state is said to be pure, corresponding to an ensemble of
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Fig. 18.4 (a) Decay of a particle A with spin projection M into B and C. The z-axis is along
the flight direction of B, while the z′-axis is along the flight direction of A in the laboratory. The
dashed pink arrow shows the flight direction of the laboratory observed in the rest frame of A.
The parameter λ is defined as the difference between the two helicities; (b) decay into two spin- 1

2
particles

P = 100% polarized particles. The projections m� of the angular momenta vanish
along z for bothB andC. Since total angular momentum is conserved,M is equal to
the sum of the spin projectionsm1+m2, which is equal to the difference λ = λ1−λ2
of their helicities. (Recall that the helicity is the projection of the spin of a particle
on its flight direction.) Hence j ≥ M = λ ≥ −j and the system is described by
the 2j + 1 dimensional unit spinor. The spins of B and C couple to the total spin s
with |s1 − s2| ≤ s ≤ s1 + s2, which in turn couples with the angular momentum �

to j with |�− s| ≤ j ≤ �+ s and m� = 0. The transition is described by the helicity
amplitude

Tλ1,λ2 = ∑
�,s α�s〈jλ|�s0λ〉〈sλ|s1s2λ1,−λ2〉 , (18.9)

where the parameters α�s depend on the physics process. They can in principle be
predicted for electromagnetic and weak decays, while for strong decays they are
obtained from fits to experimental distributions.

Let us perform a passive rotation of the coordinate system by the angles θ
and φ so that the new z-axis (denoted by z′ in Fig. 18.4) coincides with the flight
direction of A in some reference frame, such as the laboratory (that is A observes
the laboratory flying in the −z′ direction). Particle B is emitted under the angles
−θ and −φ in the rest frame of A. The transition amplitude is represented by the
conjugate transposed rotation matrix Dj∗

m′m(θ, φ) = eimφ dj
m′m(θ), see (18.8), hence

Mλ1,λ2;M = Dj∗λM(θ, φ) Tλ1,λ2 = eiMφdjλM(θ) Tλ1,λ2 . (18.10)

The matrix M has (2s1 + 1)(2s2 + 1) rows for the final state helicities of the
daughters B and C, and 2j + 1 columns for the spin projectionsM of particle A.
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To compute the angular distribution one needs to specify the initial state
polarization, while we have assumed so far the state A to be 100% polarized. The
polarization state of A is described by a (2j + 1) × (2j + 1) initial spin density
matrix ρi , which we take as diagonal:

ρi =

⎛
⎜⎜⎝

pj 0 . . . 0
0 pj−1 . . . 0
. . . . . . . . . . . .

0 . . . ..0 p−j

⎞
⎟⎟⎠ with

j∑
M=−j

pM = 1 (18.11)

The system is said to be mixed.1 The diagonal elements ρMM are the probabilities
pM to find the spin projectionM of A, with to j > M > −j . The density matrix of
the final state is given by

ρf = MρiM† . (18.12)

where M† is the conjugate transpose matrix of (18.10). The angular distribution of
particle B in the rest frame of A is described by the function

w(θ, φ) = Trρf = Tr (MρiM†) , (18.13)

up to a normalisation constant so that
∫

4π w(θ, φ)d� = 1. In the simple case of a
pure stateM the ρi is diagonal with all elements vanishing, but ρMM = 1. As shown
in the examples below, often only one value of α�s in (18.9) is possible in strong
interactions, owing to P , C and total angular momentum conservations, in which
case α�s is absorbed into the normalisation constant. The expectation value of an
operatorO—such as the spin �s—is given by:

〈O〉 = Tr (ρf O)
Trρf

. (18.14)

Before illustrating the formalism with concrete examples, let us describe the
procedure to derive the angular distributions for decay chains. The total transition
matrix is obtained by multiplying the transition matrices for each decay. For
example, for the decay chain shown in Fig. 18.5a the total transition matrix is

M = M(D)M(B)M(A). (18.15)

There are four final state particle, C,E,F,G, hence M is a matrix with (2sC +
1)(2sE+1)(2sF+1)(2sG+1) rows for the final state helicities and (2j+1) columns

1For a discussion on pure and mixed states and on the density matrix, see the Appendix F.
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Fig. 18.5 (a) Decay cascade A → BC, B → DE, D → FG; (b) decay A → BC, B → FG,
C → DE

for the spin multiplicity of A. The first coordinate system is the one in which A is at
rest, with known polarization described by the density matrix ρi . One then lies the
z-axis in the direction of one of the daughters, say B, and calculates M(A), which
is the helicity amplitude (18.9). The axes are then rotated by the angles θ and φ and
a Lorentz boost is performed into the rest frame of B, where one chooses the z-axis
in the flight direction of D. One calculates the helicity amplitudes for the decay
B → D+E, before applying a rotation into the flight direction of B and computing
M(B) with (18.10). The procedure is repeated for the decay D → F + G. Each
matrix M(k) in the chain depends on angles θk and φk , which are calculated in the
rest frame of the corresponding two-body decay. The probability to observe the final
state is then proportional to the weight w(θk, φk) = Trρf = Tr (MρiM†).2

For the decay chain shown in Fig. 18.5b the transition matrix is

M = [M(B)⊗ M(C)]M(A), (18.16)

which is a matrix with (2sF + 1)(2sG + 1)(2sD + 1)(2sE + 1) rows and (2j + 1)
columns. The symbol ⊗ denotes a tensor (Kronecker) product in which the matrix
elements are multiplied sequentially one by one. For complicated decays chains the
arithmetic becomes tedious and the weight should be calculated with a computer
program [2].

Let us now illustrate the helicity formalism with a few examples (see also
Problems 18.1 and 18.2).

2The weight w describes the angular distributions only. The final state probability is obtained by
multiplying with phase space factors and Breit-Wigner amplitudes for all decay steps.
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18.1 Angular Distribution in � → pπ−

Let us derive the angular distribution (14.22) with the helicity formalism. The
helicity amplitudes of the proton are given by (14.18) and (14.19),

T 1
2

= α0 − 1√
3
α1 and T− 1

2
= α0 + 1√

3
α1, (18.17)

where we have dropped the subscript λ2 = 0 for the pion helicity. According
to (18.10) the transition matrix is

Mλ1;M = eiMφdjλ1M
(θ) Tλ1 =

⎛
⎝ ei

φ
2 cos θ2 [α0 − 1√

3
α1], −e−i φ2 sin θ2 [α0 − 1√

3
α1]

ei
φ
2 sin θ2 [α0 + 1√

3
α1], e−i φ2 cos θ2 [α0 + 1√

3
α1]

⎞
⎠ .

(18.18)

For a 100% polarized � along the z-axis the elements of the initial density matrix
are ρ11 = 1, ρ12 = ρ21 = ρ−1−1 = 0. The calculation of the final state density
matrix (18.12) is then straightforward. Equation (14.20) is obtained by building the
trace of ρf , leading to the angular distribution (14.22) of the proton, w(θ) ∝ 1 +
α� cos θ .

On the other hand, for unpolarized� the initial density matrix is proportional to
the unit matrix. The final state density matrix is then given by

ρf = Mλ1;MM†
λ1;M =

( |α0 − 1√
3
α1|2 0

0 |α0 + 1√
3
α1|2

)
. (18.19)

Let us verify that the proton is longitudinally polarized, as advertised by (14.24),
and choose the quantization axis along the flight direction of the proton in the� rest
frame. The expectation value of sz is, using the Pauli matrix (σ3) and the parameters
S ≡ α0, P ≡ − α1√

3
, and α� defined in (14.21):

〈sz〉 = Tr
1

2

(
1 0
0 −1

)( |α0 − 1√
3
α1|2 0

0 |α0 + 1√
3
α1|2

)[
1

Trρf

]

= −Re
2α∗

0α1√
3

[
1

2(|α0|2 + |α1|2
3 )

]
= Re

[
S∗P

|S|2 + |P |2
]

= α�

2
. (18.20)

It is easy to verify that 〈sx〉 = 〈sy〉 = 0 (Problem 18.1), hence the proton is
longitudinally polarized with polarization Pp = α�.
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The proton polarization for a � hyperon with polarization P� can be computed
in a similar way by replacing the diagonal elements in the initial spin density matrix
by ρ11 = 1+P�

2 and ρ−1−1 = 1−P�
2 , choosing the quantization axis along the �

polarization and calculating the expectation value 〈�s · �k〉, where �k is a unit vector in
the direction of the proton momentum. The full formulae are given in [3].

18.2 Proton-Antiproton Annihilation at Rest into ρπ

Stopping antiprotons are captured in the target to form antiprotonic atoms. As
described in Sect. 2.3, antiprotonic hydrogen (protonium) is formed by ejecting
the 1s electron, which then de-excites by X-ray emission to the ground state, or
by annihilation from one of the atomic nS levels, a process dominant in liquid
hydrogen due to Stark collision mixing [4]. In liquid hydrogen proton-antiproton
annihilation into mesons occurs from the two hyperfine states n3S1 and n1S0 with
quantum numbers JPC = 1−− and 0−+, respectively. Let us now consider proton-
antiproton annihilation into ρπ , followed by ρ → ππ . Annihilation into ρ±π∓
(ρ± → π±π0) occurs from the 1−− and 0−+ states. On the other hand, annihilation
into ρ0π0(ρ0 → π+π−) occurs from 1−− but not from 0−+, due to C parity
conservation in strong interactions.

Let us work out the angular distribution of the π+ in p̄p → ρ+π−, ρ+ →
π+π0. For 1−− decay we have s = 1 (spin of the ρ+) and � = 1 from parity
conservation. With λ2 = 0 for the π− one obtains for the helicity amplitude (18.9)

Tλ1 = α1〈1λ1|110λ1〉〈1λ1|10λ10〉 = − 1√
2
α1λ1 ∝ λ1. (18.21)

The transition matrix has three rows and three columns and reads, when choosing
the quantization axis along the momentum vector of the ρ+:

Mλ1;M =
⎛
⎝

D1∗
11 D1∗

10 D1∗
1−1

0 0 0
−D1∗−11 −D1∗−10 −D1∗−1−1

⎞
⎠
θ=φ=0

=
⎛
⎝

1 0 0
0 0 0
0 0 1

⎞
⎠ . (18.22)

For the subsequent ρ+ → π+π0 decay we have j = 1 (� = 1 and s = 0) and both
helicities are equal to 0. The helicity amplitude is a constant. The transition matrix
has three columns and one row:

MM = (D1′∗
01 ,D

′1∗
00 ,D1′∗

0−1) =
(

eiφ
′

√
2

sin θ ′, cos θ ′,−e−iφ′
√

2
sin θ ′

)
, (18.23)
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where the apostrophe refers to the angles θ ′ and φ′ of the π+ in the rest frame of
the ρ+. The total transition matrix is

M = MMMλ1;M =
(

eiφ
′

√
2

sin θ ′, 0,−e−iφ′
√

2
sin θ ′

)
. (18.24)

A reasonable assumption is that the 3S1 protonium state is not polarized. Therefore
the trace of the final density matrix gives simply

TrMM† = sin2 θ ′ ⇒ w(θ ′) = 3
8π sin2 θ ′ (18.25)

for the normalized angular distribution. This means that in the rest frame of the ρ
the pions are emitted preferably in the direction perpendicular to the momentum
vector of the ρ.

Let us repeat the calculation for the 1S0 protonium state. Here again � = 1 and
s = 1 but we have only one initial magnetic substate with M = j = 0, hence
λ1 = 0 (helicity of the ρ). Therefore with Dj=0 ≡ 1 the transition matrix is

Mλ1;M = Tλ1 ∝
⎛
⎝

0
1
0

⎞
⎠ . (18.26)

The full transition matrix is obtained by multiplying (18.23) with this last expres-
sion:

M = cos θ ′ ⇒ w(θ ′) = 3
4π cos2 θ ′ . (18.27)

The pions are emitted preferably in the direction parallel to the momentum vector of
the ρ meson. This example illustrates clearly that the angular distribution depends
on how the decaying state has been produced.

18.3 Proton-Antiproton Annihilation at Rest into ρ0ρ0

(ρ0 → π+π−)

C parity conservation implies that only the 1S0 = 0−+ protonium state contributes
to this decay. On the other hand, P parity conservation requires � to be odd. Since
j = 0 the spins of the ρ do not couple to s = 0 or 2 but only to s = 1 with � = 1.
We have again only one initial magnetic substate with M = 0, therefore λ = 0,
hence λ1 = λ2. The helicity amplitude is equal to

Tλ1,λ2 = α11〈00|1100〉〈10|11λ1,−λ1〉 = −α11
1√
2

1√
3
λ1δλ1,λ2 ∝ λ1δλ1,λ2 .

(18.28)
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Since Dj=0 ≡ 1 the transition matrix to ρ0ρ0 is simply

Mλ1,λ2; 0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
0
0
0
0
0
0

−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (18.29)

We now deal with the ρ decays. The transition matrix is obtained by building the
tensor product of two matrices of the form (18.23):

MM = (D1∗
01,D1∗

00,D1∗
0−1)ρ1 ⊗ (D1∗

01,D1∗
00 ,D1∗

0−1)ρ2

= (D1∗
01(ρ1)D1∗

01(ρ2),D1∗
01(ρ1)D1∗

00(ρ2), . . . ,D1∗
0−1(ρ1)D1∗

0−1(ρ2)).(18.30)

Multiplying with (18.29) gives

M = D1∗
01(ρ1)D1∗

01(ρ2)− D1∗
0−1(ρ1)D1∗

0−1(ρ2)

=
(

ei[φ1+φ2]

2
sin θ1 sin θ2 − e−i[φ1+φ2]

2
sin θ1 sin θ2

)
.

= i sin(φ1 + φ2) sin θ1 sin θ2, (18.31)

hence the weight

w(θ1, φ1, θ2, φ2) = sin2(φ1 + φ2) sin2 θ1 sin2 θ2. (18.32)

In the rest frames of the ρ mesons the pions fly preferably in the direction
perpendicular to the flight direction of the laboratory. Note that the pair of angles
refer to different coordinate systems, the rest frames of the two ρ mesons. Thus the
preferred azimuthal angle between the flight directions of the meson pairs is φ1 +φ2
= 90◦, as illustrated in Fig. 18.6. We have already encountered this situation in the
similar π0 decay into two virtual photons, leading to the final state 2(e+e−), with
which the spin-parity assignment 0− was established for the neutral pion (Fig. 2.11).
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Fig. 18.6 Decay
0−+ → ρ0ρ0 → 2(π+π−).
Shown is the most likely
configuration projected on the
plane transverse to the flight
directions of the two ρ
mesons

18.4 The Spin of the �− Hyperon

Our last example shows how the spin 3
2 of the �− was established. The �− decays

dominantly into �K− (f = 68%). This is a strangeness changing and hence parity
violating weak decay. Let us assume that J�− = 3

2 and work out the angular
distribution of the� for a 100% polarized�− in the magnetic stateM = 3

2 . Angular
momentum conservation allows � = 1 and 2 (relative P and D waves between the
� and the K−). The helicity amplitude of the � is

Tλ1 = α1

〈
3

2
λ1

∣∣∣∣1
1

2
0λ1

〉
+ α2

〈
3

2
λ1

∣∣∣∣2
1

2
0λ1

〉
, (18.33)

hence

T 1
2

=
√

2

3
α1 −

√
2

5
α2 and T− 1

2
=
√

2

3
α1 +

√
2

5
α2. (18.34)

The transition matrix is

Mλ1;M = √
2 ×

⎛
⎜⎜⎝

D
3
2 ∗
1
2

3
2

[
α1√

3
− α2√

5

]
D

3
2 ∗
1
2

1
2

[
α1√

3
− α2√

5

]
D

3
2 ∗
1
2 − 1

2

[
α1√

3
− α2√

5

]
D

3
2 ∗
1
2 − 3

2

[
α1√

3
− α2√

5

]

D
3
2 ∗
− 1

2
3
2

[
α1√

3
+ α2√

5

]
D

3
2 ∗
− 1

2
1
2

[
α1√

3
+ α2√

5

]
D

3
2 ∗
− 1

2 − 1
2

[
α1√

3
+ α2√

5

]
D

3
2 ∗
− 1

2 − 3
2

[
α1√

3
+ α2√

5

]

⎞
⎟⎟⎠ .

(18.35)
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With the d-functions listed in Table 6.3 the trace of the �K− final state density
matrix and a 100% polarized�− is

Trρf = Tr

⎛
⎜⎝

√
3 × 2ei

3
2 φ
(

1+cos θ
2

)
sin θ

2

[
α1√

3
− α2√

5

]
.. .. ..

√
3 × 2ei

3
2 φ
(

1−cos θ
2

)
cos θ2

[
α1√

3
+ α2√

5

]
.. .. ..

⎞
⎟⎠

⎛
⎜⎜⎜⎜⎝

1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

⎞
⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎜⎝

√
3 × 2e−i 3

2 φ
(

1+cos θ
2

)
sin θ

2

[
α∗

1√
3

− α∗
2√
5

] √
3 × 2e−i 3

2 φ
(

1−cos θ
2

)
cos θ2

[
α∗

1√
3

+ α∗
2√
5

]

.. ..

.. ..

.. ..

⎞
⎟⎟⎟⎟⎠
,

(18.36)

where only the explicit expressions for the non-vanishing terms have been written,
hence

Tr ρf = 6

(
1 + cos θ

2

)2

sin2 θ

2

∣∣∣∣
α1√

3
− α2√

5

∣∣∣∣
2

+6

(
1 − cos θ

2

)2

cos2 θ

2

∣∣∣∣
α1√

3
+ α2√

5

∣∣∣∣
2

. (18.37)

After lengthy but straightforward algebraic manipulations one finally obtains the
angular distribution

w(θ) = Trρf ∝ (1 + α� cos θ) sin2 θ, (18.38)

where

α� ≡ 2ReP ∗D
|P |2 + |D|2 , (18.39)

with P ≡ − α1√
3

and D ≡ α2√
5
. The asymmetry parameter α� violates parity

conservation and arises from the interference between P and D waves. Figure 18.7
shows the angular distribution of the � for α� = 0 and 1.

We have demonstrated with (14.24) that in unpolarized � decay the proton is
longitudinally polarized with polarization α�. This would apply equally to the
� in �− → �K− decay if the �− had spin- 1

2 and were unpolarized, hence
the � polarization would be longitudinal and equal to α�. Let us show that this
statement is also true for a spin- 3

2 �
− by replacing the initial density matrix by a

unit matrix to describe the unpolarized �−. The rotations matrices are unitary, that
is
∑
M |DjλM |2 = 1. The density matrix ρf then simply reads

ρf = 2

( | α1√
3

− α2√
5
|2 0

0 | α1√
3

+ α2√
5
|2
)
, (18.40)
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Fig. 18.7 Decay of a spin- 3
2

hyperon into �K−. The
diagram shows the angular
distribution of the � when the
initial hyperon is produced in
theM = + 3

2 state

with trace

Trρf = 4

3
|α1|2 + 4

5
|α2|2. (18.41)

By cloning the calculation (18.20) we obtain for the longitudinal spin projection of
the �, when choosing the quantization axis along its flight direction,

〈sz〉 = Tr

(
1 0
0 −1

)( | α1√
3

− α2√
5
|2 0

0 | α1√
3

+ α2√
5
|2
)[

1

Trρf

]

= −Re
4α∗

1α2√
15

[
1

4
3 |α1|2 + 4

5 |α2|2
]

= ReP ∗D
|P |2 + |D|2

= α�

2
. (18.42)

The polarization of the � is indeed equal to α�. The angular distribution of the
proton in the rest frame of the � is then given by (14.23):

w(θ) = 1

4π
(1 + α�α� cos θ), (18.43)

from which the asymmetry parameter α� can be determined. The measurement was
performed at Fermilab with 800 GeV protons impinging on a copper target [5]. The
�− hyperons were produced in the very forward direction to ensure a vanishing
polarization. The polarization of the� was found to be α� = (1.78 ± 0.25)%, small
but still consistent with parity violation. The chief reason for this small value is
the limited phase space for the decay (Q = 71 MeV) which suppresses the D wave
contribution. Following (18.38) the decay of the�− is thus nearly parity conserving
and the angular distribution reads in good approximation

w(θ) = 3
8π sin2 θ (18.44)
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(blue curve labelled α� = 0 in Fig. 18.7). This is also true forM = − 3
2 .

Let us also compute the angular distribution for spin- 3
2 but with M = 1

2 . To
simplify the calculation we neglect the very small D wave and set α2 ≡ 0. The
trace (18.36) becomes

Trρf = 2 Tr

⎛
⎝ .. ei

φ
2

(
3 cos θ−1

2

)
cos θ2

[
α1√

3

]
.. ..

.. ei
φ
2

(
3 cos θ+1

2

)
sin θ

2

[
α1√

3

]
.. ..

⎞
⎠

⎛
⎜⎜⎝

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠

×

⎛
⎜⎜⎜⎝

.. ..

e−i φ2
(

3 cos θ−1
2

)
cos θ2

[
α∗

1√
3

]
e−i φ2

(
3 cos θ+1

2

)
sin θ2

[
α∗

1√
3

]

.. ..

.. ..

⎞
⎟⎟⎟⎠

∝
[(

3 cos θ − 1

2

)2

cos2 θ

2
+
(

3 cos θ + 1

2

)2

sin2 θ

2

]

∝ 1 + 3 cos2 θ. (18.45)

Hence the normalized angular distribution is

w(θ) = 1
8π (1 + 3 cos2 θ) (18.46)

for bothM = ± 1
2 .

Now assume that j = 1
2 for the �−. We have seen with (14.23) that the angular

distribution of the proton in� → pπ− is governed by the parity violating parameter
α�, multiplied by the � polarization. By analogy, for an unpolarized spin- 1

2 �
−

decaying into �K− (spins 1
2 → 1

2 + 0) the angular distribution of the � would be
isotropic. The �− would be produced polarized perpendicularly to the scattering
plane spanned by its flight direction and that of the incident particle (as required
by parity conservation). However, it can be made on average unpolarized when
ignoring the orientations of the scattering plane.3 Figure 18.8 shows the angular
distribution of the � from an early experiment at the CERN PS. The �− hyperons
were produced by a 8.25 GeV/c K− beam interacting with protons in a 2 m long
hydrogen bubble chamber. The average decay length was around 1 cm. The 40
decays plotted in Fig. 18.8 show that the angular distribution is compatible with
a spin- 3

2 �
−, mainly produced in the magnetic state ± 1

2 , and exclude a constant

3We now know that the asymmetry parameter α� in �− → �K− is rather small (1.78 ± 0.25)%
[5]. Hence the angular distribution of the � would be nearly isotropic, even if the �− hyperons
were fully polarized.
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Fig. 18.8 Angular
distribution of the � in the
decay �− → �K−. The blue
curve shows a fit to the data
with the function 1 + 3 cos2 θ

(adapted from [6])

distribution with a probability of 99.7% [6]. The spin of the �− is therefore (at
least) equal to 3

2 .
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Appendix A
Landau-Yang Theorem

The theorem states that states with quantum numbers 1±, 3−, 5−, 7−. . . do not decay
into two spin-1 massless bosons (such as photons or gluons). We reproduce here an
elegant proof from Ref. [1]. Consider the decay of a particle with parity P and spin
j decaying into two massless spin-1 particles, say photons. The photons are emitted
back-to-back and their spin projections (helicities) lie parallel or antiparallel to their
flight directions. The photons are right-handed (R) or left-handed (L). The four
possible configurations are shown in Fig. A.1. The projection of the total angular
momentum onto the z axis is M = 0 for RR and LL (the contribution from any
orbital angular momentum vanishes along the flight direction) and M = +2 and −2
for RL and LR, respectively. The parity eigenstates are

ψ+ = RR + LL P = +1,

ψ− = RR − LL with parity P = −1,

ψ ′ = RL+ LR P = +1, (A.1)

since parity reverses the momenta but not the spins:R ↔ L underP transformation.
The superposition RL − LR is antisymmetric under permutations and is forbidden
by Bose-Einstein statistics.

The states ψ+ and ψ− are invariant under rotations about the z-axis, as well as
under rotation of 180◦ about any axis perpendicular to z (say x). They are rotation
eigenfunctions with eigenvalues +1. Therefore the wavefunction of the 2γ pair is
given by the spherical harmonics YM=0

j (θ, φ) with j even, since for odd j the

eigenvalue under rotations by 180◦ around the x-axis is –1, YM=0
j flipping its sign

(cosθ → –cosθ ). Therefore, the wavefunction for odd j would have to be of the
ψ ′ type, which has positive parity according to (A.1). Consequently, negative parity
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Fig. A.1 Decay of a state
with parity P and spin (j,M)
into two photons. Photon 1
flies along +z, photon 2
along −z

odd spin states cannot decay into two photons. In addition, spin-1 states cannot be
described by ψ ′ since M = ±2 is impossible. Thus positive and negative j = 1
states do not decay into two photons.



Appendix B
Invariant Mass Distribution

Consider a three-body system with fixed total energy, e.g. a resonance with mass
M decaying into three particles with masses m1,m2 and m3. We have mentioned in
Sect. 2.5.1 that phase space distributed events are homogeneously distributed when
expressed as a function of two kinetic energies (e.g. T1 and T2). The Dalitz plot
density is given by [2]

d2ρ = π2dT1dT2. (B.1)

Alternatively, the squared invariant masses (say m2
12 and m2

13 ) can be used as
independent variables. The two-body invariant masses are defined as

m2
12 ≡ (P1 + P2)

2, m2
13 ≡ (P1 + P3)

2, m2
23 ≡ (P2 + P3)

2, (B.2)

where the momenta Pi are 4-vectors, Pi = (Ei, �pi). The invariant masses satisfy
the relation (Problem 2.1)

m2
12 +m2

13 +m2
23 = m2

1 +m2
2 +m2

3 +M2, (B.3)

so that only two of the three invariant masses can be chosen independently.
Let us now verify that the Dalitz plot m2

12 vs. m2
13 is uniformly populated. In

the center-of-mass system of the three-body final state (the rest frame of M) the
invariant masses read

m2
12 = (E1 + E2)

2 − (
− �p3︷ ︸︸ ︷

�p1 + �p2)
2 = (E1 + E2)

2 − (
M−E1−E2︷︸︸︷
E3 )2 +m2

3,

m2
13 = (E1 + E3︸ ︷︷ ︸

M−E2

)2 − ( �p1 + �p3︸ ︷︷ ︸
− �p2

)2 = (M − E2)
2 − E2

2 +m2
2. (B.4)
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236 B Invariant Mass Distribution

The density (B.1) becomes in the new variables

d2ρ = π2dT1dT2 = π2dE1dE2 = π2

∣∣∣∣∣
∂(m2

12,m
2
13)

∂(E1, E2)

∣∣∣∣∣
−1

dm2
12dm

2
13, (B.5)

with

∂(m2
12,m

2
13)

∂(E1, E2)
=
∣∣∣∣
2(E1 + E2)+ 2(M − E1 − E2) . . .

0 −2(M − E2)− 2E2

∣∣∣∣

= −4M2, (B.6)

so that finally

d2ρ = π2

4M2 dm
2
12dm

2
13 , (B.7)

which proves that the Dalitz plot density expressed in m2
12 vs. m2

13 is homogeneous.



Appendix C
Condon-Shortley-Wigner Convention

The matrix elements of the SU(2) generators (Table 6.2) follow from the commuta-
tion relation

[Ji, Jj ] = iεijkJk. (C.1)

A reminder of the proof might be useful. The ladder operators increment or
decrement the projection of the angular momentum:

J+|jm〉 = a|jm+ 1〉,
J−|jm〉 = b|jm− 1〉. (C.2)

The complex constants a and b are obtained from the matrix elements

〈jm|J †
+J+|jm〉 = |a|2 = 〈jm|J−J+|jm〉,

〈jm|J †
−J−|jm〉 = |b|2 = 〈jm|J+J−|jm〉. (C.3)

Noting that

J−J+ = J 2
1 + J 2

2 + i[J1, J2] = �J 2 − J 2
3 − J3,

J+J− = J 2
1 + J 2

2 − i[J1, J2] = �J 2 − J 2
3 + J3, (C.4)

one gets by taking the eigenvalues

|a|2 = j (j + 1)−m2 −m = (j −m)(j +m+ 1),

|b|2 = j (j + 1)−m2 +m = (j +m)(j −m+ 1). (C.5)
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238 C Condon-Shortley-Wigner Convention

The phases being arbitrary the convention is to choose a and b real. Therefore

J+|jm〉 = √
(j −m)(j +m+ 1)|jm+ 1〉,

J−|jm〉 = √
(j +m)(j −m+ 1)|jm− 1〉. (C.6)



Appendix D
SU(3) Young Tableau and Weight
Diagram

In SU(n) a set of n− 1 integer numbers is associated to a weight diagram and to its
corresponding Young tableau. In SU(3) the two integer numbers p and q indicate
the number of times the ladder operator I+ has to be applied from the left boundary
to the right boundary of the weight diagram, p at the top and q at the bottom
boundary. SU(3) Young tableaux have at most three rows. The integer p is equal
to the number of boxes in the top row exceeding those in the second row, while q
refers to the number of boxes in the second row exceeding those in the third row. A
few illustrating examples are shown in Fig. D.1.
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240 D SU(3) Young Tableau and Weight Diagram

Fig. D.1 Examples of SU(3) tableaux and associated (i3, y) weight diagrams (see the text)



Appendix E
Expectation Value of the Casimir
Operator

The (Casimir) operator

�G2 =
8∑
i=1

G2
i , (E.1)

commutes with the SU(3) generatorsGi (Chap. 7) and therefore also with the ladder
operators I± (7.8) and U±, V± (7.9). Hence all members of a given SU(3) multiplet
have the expectation value 〈 �G2〉. We start by showing that

�G2 = 1

2
{I+, I−} + 1

2
{U+, U−} + 1

2
{V+, V−} +G2

3 +G2
8, (E.2)

where the curly brackets indicate anticommutators. For the first term

1

2
{I+, I−} = 1

2
(G1 + iG2)(G1 − iG2)+ 1

2
(G1 − iG2)(G1 + iG2) = G2

1 +G2
2

(E.3)
and likewise for the other terms in curly brackets:

1

2
{U+, U−} + 1

2
{V+, V−} = G2

4 +G2
5 +G2

6 +G2
7, (E.4)

which completes the proof. Consider now the states |max〉 for which

I+|max〉 = V+|max〉 = U−|max〉 = 0. (E.5)
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242 E Expectation Value of the Casimir Operator

Table E.1 SU(3)
expectation values of I3, Y
for the states |max〉 and
multiplet value 〈 �G2〉

Dim i3 y 〈 �G2〉
1 0 0 0

3, 3∗ 1
2 ± 1

3
4
3

6, 6∗ 1 ± 2
3

10
3

8 1 0 3

10 3
2 1 6

These are the states on the rightmost edges of the weight diagrams, for instance
the u-quark in the fundamental representation, or the �+ in the octet one. Let us
calculate with (E.2) the multiplet expectation value 〈 �G2〉 for |max〉 states:

〈 �G2〉 = 1

2
〈I+I−〉 + 1

2
〈U−U+〉 + 1

2
〈V+V−〉 + 〈 G2

3︸︷︷︸
I 2

3

〉 + 〈 G2
8︸︷︷︸

3
4Y

2

〉

= 1

2
〈[I+, I−]〉 + 1

2
〈[U−, U+]〉 + 1

2
〈[V+, V−]〉 + 〈I 2

3 〉 + 3

4
〈Y 2〉

= 1

2
〈2I3〉 + 1

2

〈
I3 − 3

2
Y

〉
+ 1

2

〈
I3 + 3

2
Y

〉
+ 〈I 2

3 〉 + 3

4
〈Y 2〉. (E.6)

We have used commutation properties from Table 7.2. Therefore

〈 �G2〉 = 2〈I3〉 + 〈I 2
3 〉 + 3

4 〈Y 2〉 . (E.7)

Table E.1 lists the values of 〈 �G2〉 for various dimensions.



Appendix F
Density Matrix Formalism

F.1 Pure and Mixed States

The concept of pure and mixed states is best explained by considering as concrete
example an ensemble of spin- 1

2 polarized particles. To start with, let us assume that
the particles are 100% polarized along the +z-direction. The system is said to be in
a pure state and is represented by the spinor

|ψ1〉 =
(

1
0

)
(F.1)

in the 2-dimensional spin space. Let us now perform an active rotation of the
physical system so that the spins all point along the direction determined by the
angles θ and φ. The full rotation matrix for the spin j = 1

2 is, according to (18.7)
and using the d-functions in Table 6.3,

D
1
2
mm′ (θ, φ) =

(
e−i φ2 cos θ2 −e−i φ2 sin θ2

ei
φ
2 sin θ

2 ei
φ
2 cos θ2

)
. (F.2)

Hence the rotated wavefunction reads

|#1〉 = D
1
2
mm′(θ, φ)

(
1
0

)
=
(

e−i φ2 cos θ2
ei
φ
2 sin θ

2

)

= e−i φ2 cos
θ

2
|ψ1〉︸︷︷︸⎛
⎝1

0

⎞
⎠

+ei
φ
2 sin

θ

2
|ψ2〉︸︷︷︸⎛
⎝ 0

1

⎞
⎠

. (F.3)
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244 F Density Matrix Formalism

The wavefunction |#1〉 is a superposition of the states |ψ1〉 and |ψ1〉 and still
represents a pure state of +100% polarization. Similarly, the wavefunction |#2〉,
representing a rotated pure state with –100% polarization, is

|#2〉 = D
1
2
mm′(θ, φ)

(
0
1

)
=
(

−e−i φ2 sin θ
2

ei
φ
2 cos θ2

)

= −e−i φ2 sin
θ

2
|ψ1〉 + ei

φ
2 cos

θ

2
|ψ2〉. (F.4)

Let us calculate the expectation value of an operator in the (|ψ1〉, |ψ2〉) basis, for
example the average value of the spin component sz in the state #1:

〈sz〉 = 〈#1|sz|#1〉 = 1

2
〈#1|σz|#1〉

= 1

2

(
ei
φ
2 cos

θ

2
, e−i φ2 sin

θ

2

)(
1 0
0 −1

)(
e−i φ2 cos θ2

ei
φ
2 sin θ2

)

= 1

2

(
cos2 θ

2
− sin2 θ

2

)
= cos θ

2
. (F.5)

Similarly, for the state |#2〉 the average value of 〈sz〉 is 〈#2|sz|#2〉 = − cos θ
2 .

Consider now a polarized spin- 1
2 system # with incomplete polarization (PT <

1) and denote the probability to find a spin pointing along +z by p1 and along −z
by p2. The polarization is then equal to PT = p1−p2

p1+p2
with p1 + p2 = 1. Such a

system is said to be in a mixed state |#〉. The expectation value of sz is equal to

〈sz〉 = 〈#|sz|#〉 = PT

(
cos θ

2

)
. (F.6)

The derivation is most conveniently obtained by introducing the density matrix
formalism which is applied here to the particular case of systems with spins [3].

Let us rotate the system with spin j by the angle θ and φ. The 2j + 1 pure states
|#i〉 (i = 1 . . .2j + 1) can be written as linear superpositions of the 2j + 1 basis
spinors |ψn〉:

|#i〉 =
2j+1∑
n

ain|ψn〉, (F.7)

as in (F.3) or (F.4) for j = 1
2 . For each pure state |#i〉 the expectation value of an

operatorO in the (|ψ1〉 . . . |ψn〉) basis is then given by

〈O〉i = 〈#i |O|#i〉 =
2j+1∑
n,m

ai∗n aim〈ψn|O|ψm〉. (F.8)
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If the states |#i〉 are populated each with the probability pi , the overall expectation
value is equal to

〈O〉 =
2j+1∑
i=1

pi〈O〉i =
2j+1∑
n,m

2j+1∑
i

pia
i
ma

i∗
n 〈ψn|O|ψm〉 =

2j+1∑
n,m

ρmnOnm, (F.9)

= Tr (Oρ), where we have defined the (2j + 1)× (2j + 1) spin density matrix as

ρmn =
2j+1∑
i=1

pia
i
ma

i∗
n . (F.10)

The last equation assumes that the probabilities pi are normalized so that Tr ρ =∑
n ρnn = 1. The normalization is guaranteed by writing the expectation value as

〈O〉 = Tr (ρO)

Tr ρ
. (F.11)

The density matrix is Hermitian and positive definite,

ρ† = ρ ⇒ ρ∗
mn = ρnm, ρnn ≥ 0, (F.12)

and ρ2 = ρ for a pure state. The proofs are left as simple exercises.
As an application, consider a spin- 1

2 system. The density matrix is

ρ =
(

p1|a1
1|2 + p2|a2

1 |2 p1a
1
1a

1∗
2 + p2a

2
1a

2∗
2

p1a
1∗
1 a

1
2 + p2a

2∗
1 a

2
2 p1|a1

2 |2 + p2|a2
2|2
)
, (F.13)

with the parameters ai from (F.3) and (F.4):

a1
1 = e−i φ2 cos

θ

2
, a1

2 = ei
φ
2 sin

θ

2
, a2

1 = −e−i φ2 sin
θ

2
, a2

2 = ei
φ
2 cos

θ

2
.

(F.14)
Thus, the average spin projection 〈sz〉 is with the Pauli matrix (σ3):

〈sz〉 = Tr (ρsz) = Tr

(
ρ11 ρ12

ρ21 ρ22

)
1

2

(
1 0
0 −1

)

= 1

2
Tr

(
ρ11 −ρ12

ρ21 −ρ22

)
= 1

2
(ρ11 − ρ22), (F.15)

or with ρ11 + ρ22 = p1 + p2 = 1:

〈sz〉 = 1

2
(p1 −p2) cos2 θ

2
+ 1

2
(p2 −p1) sin2 θ

2
= (p1 −p2)

cos θ

2
= PT

(
cos θ

2

)
,

(F.16)
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which completes the proof of (F.6). For example, the density matrix for a PT = 100%
polarized proton beam along the z-axis (p1 = 1, p2 = 0, θ = φ = 0) is diagonal with
ρ11 = 1 and ρ22 = 0. The average spin projection is 〈sz〉 = 1

2 . On the other hand, for
a 100% polarized proton beam along the y-axis (p1 = 1, p2 = 0, θ = φ = 90◦), the
expectation value of the spin component sy is with (F.14):

〈sy〉 = Tr
1

2

(
1 −i
i 1

)
1

2

(
0 −i
i 0

)
= 1

4
Tr

(
1 −i
i 1

)
= 1

2
, (F.17)

as expected.

F.2 Angular Distributions in Two-Body Decays

The density matrix (F.10) can be rewritten as

ρ =
∑
i

pi#
i#i†. (F.18)

The products in the sum are tensor (Kronecker) products in which each element aim
of the column vector #i is multiplied by each element ai∗n of the row vector #i†.
Let us now consider a transition between the initial state |i〉 with density matrix ρi
and a final state |f 〉 with density matrix ρf , such as the decay of an initial state A
into two particles B and C. We orient the coordinate system in the rest frame of
A so that B is emitted under the angles θ and φ. The final state wavefunctions are
obtained with the transition matrix M:

#i(f ) = M#i(i), (F.19)

each pure state #i(i) being populated with the probability pi . The density matrix in
the final state reads

ρf =
∑
i

pi#
i(f )#i†(f ) =

∑
i

piM#i(i)[M#i(i)]† =
∑
i

piM#i(i)#i†(i)M†

= M
[∑

i

pi#
i(i)#i†(i)

]
M† ⇒ ρf = MρiM†. (F.20)

The angular distribution of B in the rest frame of A, is described by the weight
function

w(θ, φ) = Trρf = Tr (MρiM†), (F.21)

apart from a normalisation constant, so that
∫

4π w(θ, φ)d� = 1.



Problems

2.1 Invariant Masses

A particle of massM decays into three daughters with massesm1,m2 andm3. Show
that

m2
12 +m2

13 +m2
23 = m2

1 +m2
2 +m2

3 +M2. (F.22)

3.1 Isospin and Clebsch-Gordan Coefficients

(a) The f2(1270) meson is an isoscalar meson (i = 0). Predict the ratio of partial
widths

�(f2 → π+π−)
�(f2 → π0π0)

. (F.23)

(b) Which isospin values are possible in the reactionsK−p → �0π0 andK−p →
�+π−?

(c) Predict the ratio of cross sections.

Ignore mass differences within isospin multiplets.

3.2 Pion-Nucleon Scattering

The pion-nucleon system couples to i = 1
2 and i = 3

2 . With the help of the
Clebsch-Gordan coefficients (Fig. 2.8) determine the isospin decomposition of the
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three states |π+p〉, |π−p〉 and |π0n〉 into i = 1
2 and 3

2 . Use isospin conservation
and charge independence to predict the ratios of cross sections

σ1

σ2
≡ σ(π+p→π+p)

σ(π−p→π−p) ,

σ1

σ3
≡ σ(π+p→π+p)

σ(π−p→π0n)
. (F.24)

The low energy cross sections are dominated by the excitation of the (i = 3
2 )

(1232) resonance. Predict the ratios of cross sections

σ1

σ2
≡ σ(π+p→++→π+p)

σ(π−p→0→π−p) ,

σ1

σ3
≡ σ(π+p→++→π+p)

σ(π−p→0→π0n)
. (F.25)

Compare your results to the cross sections measured with a pion beam of
�190 MeV:

σ1 : σ2 : σ3 � 204 : 23 : 47 mb. (F.26)

4.1 Exotic Quantum Numbers

Show that the following quantum numbers are impossible for quark-antiquark
states:

JPC = 0−−, 0+−, 1−+, 2+−, 3−+.

4.2 Nomenclature and Quantum Numbers

Derive from the properties (4.1)–(4.4) the quantum numbers JPC(iG) and the quark
content of the following mesons:

a+
2 (1320), h1(1380), f ′

2(1525), π0
1 (1400),K+

1 (1400),

K0
∗
(1430),D−, B∗

s2(5840)0, χc1(1P).
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5.1 Pseudoscalar Mixing Angle

The following branching ratios have been measured with stopping antiprotons in
liquid hydrogen (Z. Phys. C58, 175 (1993)):

f (pp̄ → π0η) = (2.12 ± 0.12)× 10−4,

f (pp̄ → π0η′) = (1.23 ± 0.13)× 10−4.

In hydrogen the stopping antiprotons are captured by the proton and build antipro-
tonic atoms (Fig. 2.7). The p̄p atom then annihilates from one of the atomic states
with orbital momentum �.

(a) Consider � = 0, 1 and 2. Which atomic states 2s+1�J contribute to π0η and
π0η′?

(b) Assume that the dominant relative angular momentum in π0η and π0η′ is
� = 0. Estimate the ratio of intensities |〈pp̄|A|η′〉|2/|〈pp̄|A|η〉|2 (where A
is the transition operator) by using the wavefunctions of the η and η′ as a
function of pseudoscalar mixing angle. Then apply the OZI rule and estimate
the pseudoscalar mixing angle. Assume that the phase space factor for � = 0 is
proportional to the momentum p in two-body decays.

6.1 3-Dimensional SU(2) Generators

Find the matrix representations of the SU(2) generators for isovector mesons and
verify the commutation relations (6.2).

6.2 Kaon Doublets

1. Use theG parity transformations for the three light quarks and Table 6.4 to show
that the kaon states transform according to (6.41).

2. Derive the isospin decomposition (6.45).
3. Symmetrize the states (6.45) for i = 0 and i = 1 for angular momenta � = 0 (or

even) and � = 1 (or odd).

7.1 Commutation Rules for SU(3) Ladder Operators

The ladder operators obey the rules listed in Table 7.2. Show for example that
[U−, I+] = 0 and [U+, U−] = 3

2Y − I3.
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7.2 Ladder Operators on Antiquarks

Show that the operators I±, V± and U± reverse the signs when applied on u, d , and
s antiquarks.

7.3 Radiative Kaon Decay

Predict the ratio

R = �(K∗0 → K0γ )

�(K∗+ → K+γ )
. (F.27)

The experimental value is R = 2.5 ± 0.3. Calculate the ratio ms
mu

of strange to light
quark masses.

8.1 Width of the ϒ(1S) Resonance

The width of the ϒ(1S) observed with colliding e+e− beams is dominated by the
energy uncertainty in the beam energies. Figure F.1 shows the cross section for the
ϒ(1S) decaying into hadrons, measured by the Crystal Ball (Fig. 7.8) at DORIS.
The branching ratio for ϒ(1S) decay into lepton pairs is � 7.5%.

(a) What are the branching ratios for ϒ(1S) decay into e+e−, μ+μ− and in τ+τ−
(ignoring mass differences)?

Fig. F.1 The ϒ(1S) in
e+e− → ϒ(1S) → hadrons,
after Kobel, M., et al.: Z.
Phys. C 53, 193 (1992)
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(b) What is the branching ratio for the decay into hadrons?
(c) What kind of interactions are responsible for the decays into leptons and

hadrons?
(d) Estimate from the data in Fig. F.1 the natural width of the ϒ(1S) and compare

your result with the table value (8.6).

8.2 Van Royen-Weisskopf Formula

Neutral vector mesons V decay into e+e− (or μ+μ−) pairs with the partial widths

�(V → e+e−) = 16πα2

M2
V

Q2|#(0)|2, (F.28)

where Q is the average charge of the quark flavour and #(0) is the qq̄ orbital
wavefunction at the interquark distance r = 0. The factor α2Q2 arises from the
couplings of the photon to the qq and e+e− pairs (Fig. F.2). Predict the ratios of
partial widths between the mesons ρ0, ω, φ, J/ψ(1S) and ϒ(1S)and compare with
the experimental data in Table F.1. Assume ideal mixing and also that the ratio
|#(0)|2
M2
V

is constant.

Fig. F.2 Drell-Yan pair
production in vector meson
decays

Table F.1 Measured partial
widths into electron-positron
pairs

�(V → e+e−) [keV]

ρ0 7.04 ± 0.06

ω 0.60 ± 0.02

φ 1.26 ± 0.02

J/ψ(1S) 5.55 ± 0.14

ϒ(1S) 1.340 ± 0.018
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9.1 Logarithmic and Harmonic Potentials

Show that the logarithmic potentials κ ln r
r0

and br2 predict the P levels to lie below
the S levels, e.g. the 1P lies below the 2S.

10.1 6 × 6∗, 3 × 6

Decompose the products of SU(3) representations 6 × 6∗ and 3 × 6.

10.2 Two-Gluon Coupling

Gluons are associated to the 8-dimensional representation of SU(3)c. Decompose
the 8 × 8 representation of two gluons and show the occurrence of the glueball
colour singlet.

11.1 f ′ → ηη Decay Amplitude

Derive the decay amplitude for γ (f ′ → ηη) listed in Table 11.2.

12.1 Flatté Coupled Channel Formula

Start from the production vector T = (1 − iKρ)−1P (12.19) and prove that the
amplitude to decay into channel 1 is given by the Flatté formula (12.28).

13.1 Gell-Mann-Nishijima Formula

Check the Gell-Mann-Nishijima formula for the following particles:
D+
s , K0, �+, �+

c ,  0
b, t-quark.

13.2 � and �0 Flavour Wavefunctions

Derive the mixed antisymmetric SU(3)f wavefunctions of the � and �0 listed in
Table 13.4.
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14.1 Magnetic Dipole Moment of the Nucleon

Predict the ratio of neutron to proton magnetic moments, assuming the flavour ×
spin wavefunctions of the ground state baryons to be antisymmetric, i.e. given by
the combination 1√

2
|φMSχMA − φMAχMS〉.

14.2 Magnetic Dipole Moment of the �−

Derive the magnetic moment of the �−:

μ�− = −4

9

( e
2m

)
+ 1

9

(
e

2ms

)
. (F.29)

14.3 Magnetic Moment of the 	++

Predict the magnetic moment of the++ from the quark model (in units of nuclear
magnetons) and compare your result with the experiment, Bosshard, A., et al.: Phys.
Rev. 44 1962 (1991).

17.1 SU(4)f and SU(5)f

(a) For baryons made of three quarks (u, d, s or c) prove the decomposition of
SU(4) × SU(4) × SU(4):
4 × 4 × 4 = 4∗ + 20 + 20 + 20.

(b) Show that by adding b quarks:
5 × 5 × 5 = 10∗ + 40 + 40 + 35.

18.1 Polarization of the Proton in Unpolarized � → π−p

decay

We have shown that the polarization of the proton is equal to the asymmetry
parameter α� for unpolarized�. Show that the transverse polarization of the proton
vanishes.
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18.2 Angular Distribution in J/ψ → μ+μ− Decay

(a) This is a parity conserving electromagnetic decay. What are the possible angular
momenta between the two muons?

(b) Let the J/ψ fly in the z-direction and predict the angular distribution of the
muons in the rest frame of the J/ψ with respect to its flight direction for 100%
polarization along the flight direction of the J/ψ ,

(c) perpendicular to its flight direction.

Note that the muons cannot be emitted with the same helicites since spin flips are
not allowed for the muon current which absorbs the γ .
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2.1 Invariant Masses

Let P1, P2 and P3 be the 4-momenta, then

m2
12 +m2

13 +m2
23 = (P1 + P2)

2 + (P1 + P3)
2 + (P2 + P3)

2

= 2P 2
1 + 2P 2

2 + 2P 2
3 + 2P1P2 + 2P1P3 + 2P2P3

= 2m2
1 + 2m2

2 + 2m2
3 + (P1 + P2 + P3)

2 −m2
1 −m2

2 −m2
3

= m2
1 +m2

2 +m2
3 +M2, (F.30)

where we have used energy and momentum conservation: P 2 = (P1 + P2 + P3)
2 =

M2.

3.1 Isospin and Clebsch-Gordan Coefficients

(a) The Clebsch-Gordan decomposition is

|00〉 = − 1√
3
|π0π0〉 + 1√

3
|π+π−〉 + 1√

3
|π−π+〉. (F.31)

Hence, neglecting the mass difference between neutral and charged pions,

�(f2 → π+π−)
�(f2 → π0π0)

� 2. (F.32)
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(b) The π and the � have i = 1 and therefore combine to i = 0, 1 or 2, while K
and p combine to i = 0 or 1. Due to isospin conservation in strong interactions
the transition to i = 2 is excluded. The π0 and the �0 have both i3 = 0 and the
i = 1 Clebsch-Gordan coefficient 〈10|1100〉 for �0π0 vanishes, therefore the
transition K−p → �0π0 is pure i = 0, again due to isospin conservation. For
K−p → �+π− both i = 0 and 1 contribute. The isospin decompositions are

|K−p〉 = − 1√
2
|0〉 + 1√

2
|1〉,

|�0π0〉 = − 1√
3
|0〉 +

√
2

3
|2〉,

|�+π−〉 = 1√
3
|0〉 + 1√

2
|1〉 + 1√

6
|2〉. (F.33)

With isospin conservation the ratio of cross sections is therefore given by (ignoring
mass differences in the final state)

σ(K−p → �0π0)

σ (K−p → �+π−)
�
∣∣∣∣

M0

M0 −
√

3
2M1

∣∣∣∣
2

, (F.34)

where M0 and M1 are the transition amplitudes for i = 0 and 1.

3.2 Pion-Nucleon Scattering

The isospin decomposition is from the table in Fig. 2.8:

|π+p〉 =
∣∣∣∣

i i3︷︸︸︷
3

2

3

2

〉
,

|π−p〉 =
√

1

3

∣∣∣∣
3

2
− 1

2

〉
−
√

2

3

∣∣∣∣
1

2
− 1

2

〉
,

|π0n〉 =
√

2

3

∣∣∣∣
3

2
− 1

2

〉
+
√

1

3

∣∣∣∣
1

2
− 1

2

〉
. (F.35)

Isospin conservation forbids transitions matrix elements 1
2 ↔ 3

2 . Furthermore the
transition amplitudes do not depend on i3 due to charge independence. Let us write
the transition amplitudes as M 1

2
andM 3

2
. The total cross sections for π+p and π−p

scattering are given by the amplitudes squared, times kinematical factors (phase
space), which we assume to be equal by neglecting the mass differences between
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charged and neutral pions, and between proton and neutron. Hence

σ1 ≡ σ(π+p → π+p) ∝ |M 3
2
|2,

σ2 ≡ σ(π−p → π−p) ∝
∣∣∣∣
1

3
M 3

2
+ 2

3
M 1

2

∣∣∣∣
2

,

σ3 ≡ σ(π−p → π0n) ∝
∣∣∣∣
√

2

3
M 3

2
−

√
2

3
M 1

2

∣∣∣∣
2

. (F.36)

Since the resonance dominates low energy pion-nucleon scattering we neglect the
M 1

2
term and predict from (F.36) the ratios of total cross sections

σ1 : σ2 : σ3 ∝ 9 : 1 : 2, (F.37)

which are in very good agreement with data.

4.1 Exotic Quantum Numbers

For qq mesons: |�− s| < j < �+ s, P = −(−1)�, C = (−1)�+s .

The following quantum numbers are impossible:

0−− : j = 0, P = −1 ⇒ � = 0 ⇒ s = 0 ⇒ C = +1 not − 1,

0+− : j = 0, P = +1 ⇒ � = 1 ⇒ s = 1 ⇒ C = +1 not − 1,

1−+ : j = 1, P = −1 ⇒ � = 0, 2 ⇒ s = 1 ⇒ C = −1 not + 1,

2+− : j = 2, P = +1 ⇒ � = 1, 3 ⇒ s = 1 ⇒ C = +1 not − 1,

3−+ : j = 3, P = −1 ⇒ � = 2, 4 ⇒ s = 1 ⇒ C = −1 not + 1. (F.38)

4.2 Nomenclature and Quantum Numbers

Notation: JPC(IG) [quark content]. C andG are omitted when not defined.

a+
2 (1320) : 2+(1−)[ud], h1(1380) : 1+−(0−)[uu, dd, ss]†,

f ′
2(1525) : 2++(0+)[ss]†,

π0
1 (1400) : 1−+(1−)[non − qq], K+

1 (1400) : 1+
(

1

2

)
[us],
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K
∗0
0 (1430) : 0+

(
1

2

)
[sd),

D− : 0−
(

1

2

)
[cd], B∗

s2(5840)0 : 2+(0)[bs], χc1(1P) : 1++(0+)[cc].

(F.39)

†The superposition of uu, dd and ss pairs in isoscalar mesons is discussed in
Sect. 5.1.

5.1 Pseudoscalar Mixing Angle

(a) The annihilation into two pseudoscalar mesons (0−+) is possible with the
angular momenta � = 0 and � = 2 from the 0++ (or 3P0) and 2++ (or 3P2)
protonium levels, respectively. This follows from (2.5) and parity conservation,
and from (3.17) and C parity conservation. For � = 1 the quantum numbers
1−+ are exotic and do not couple to pp.

(b) We apply the OZI rule and drop the ss components in the octet and singlet
wavefunctions. The η and η′ mesons then contribute only their light quark
components and we write the truncated states as

|η̃〉 =
[

1√
6

cos θP − 1√
3

sin θP

]
|uu+ dd〉,

|η̃′〉 =
[

1√
6

sin θP + 1√
3

cos θP

]
|uu+ dd〉. (F.40)

The ratio of annihilation rates is then given by (neglecting � = 2)

I (pp → π0η̃′)
I (pp → π0η̃)

=
⎡
⎣

1√
6

sin θP + 1√
3

cos θP
1√
6

cos θP − 1√
3

sin θP

⎤
⎦

2

· pη′

pη
=
⎡
⎣1 + 1√

2
tan θP

1√
2

− tan θP

⎤
⎦

2

· pη′

pη
.

(F.41)

For annihilation at rest pη′ = 685 MeV/c and pη = 852 MeV/c. Inserting the
experimental ratio of intensities leads to θP = −20.4◦.
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6.1 3-Dimensional SU(2) Generators

For the matrix representations of I2 and I3, see (6.8) and (6.12), respectively. With
Table 6.2 one also obtains

(I1) = 〈m|I1|m′〉 = 1√
2

⎛
⎝

0 1 0
1 0 1
0 1 0

⎞
⎠ . (F.42)

The commutation relations (6.2) are then easily verified. For example,

(I1)(I3) = 1√
2

⎛
⎝

0 0 0
1 0 −1
0 0 0

⎞
⎠ , (I3)(I1) = 1√

2

⎛
⎝

0 1 0
0 0 0
0 −1 0

⎞
⎠ , (F.43)

hence

(I1)(I3)− (I3)(I1) = i√
2

⎛
⎝

0 i 0
−i 0 +i

0 −i 0

⎞
⎠ = i ε132︸︷︷︸

−1

1√
2

⎛
⎝

0 −i 0
i 0 −i
0 i 0

⎞
⎠

︸ ︷︷ ︸
(I2)

. (F.44)

6.2 Kaon Doublets

1. By using (6.29) and Gs = s one gets with Table 6.4

G|K+〉 = 1√
2
G|us + su〉 = + 1√

2
|ds + sd〉 = −|K0〉,

G|K0〉 = 1√
2
G|ds + sd〉 = − 1√

2
|us + su〉 = +|K−〉,

G|K0〉 = − 1√
2
G|sd + ds〉 = + 1√

2
|su+ us〉 = +|K+〉,

G|K−〉 = − 1√
2
G|su+ us〉 = − 1√

2
|sd + ds〉 = −|K0〉. (F.45)
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2. The isospin decompositions of the KK states are derived from Fig. 2.8 or by
copying (2.29) and (2.30),

|0 0〉 = 1√
2

(∣∣∣∣
1

2
− 1

2

〉
−
∣∣∣∣−

1

2

1

2

〉)
= 1√

2
(|K0

K0〉 + |K−K+〉),

|1 0〉 = 1√
2

(∣∣∣∣
1

2
− 1

2

〉
+
∣∣∣∣−

1

2

1

2

〉)
= 1√

2
(|K0

K0〉 − |K−K+〉), (F.46)

where we have flipped the signs of the second terms to account for the minus
sign in the K− isospinor.

3. The symmetrized eigenstates of G are

� = 0, i = 0 : 1

2
[|K0

K0〉 + |K−K+〉 + |K0K
0〉 + |K+K−〉] (G = +1),

� = 0, i = 1 : 1

2
[|K0

K0〉 − |K−K+〉 + |K0K
0〉 − |K+K−〉] (G = −1),

� = 1, i = 0 : 1

2
[|K0

K0〉 + |K−K+〉 − |K0K
0〉 − |K+K−〉] (G = −1),

� = 1, i = 1 : 1

2
[|K0

K0〉 − |K−K+〉 − |K0K
0〉 + |K+K−〉] (G = +1),

(F.47)

as is easily verified by applying the transformations (F.45). The eigenstates fulfil
the relation (4.4),G = (−1)i+�.

7.1 Commutation Rules for SU(3) Ladder Operators

Let us show that U−I+ = I+U− follows from the structure constants in Table 7.1:

U−I+ = (G6 − iG7)(G1 + iG2) = G6G1 + i(G6G2 −G7G1)+G7G2, (F.48)

and

I+U− = (G1 + iG2)(G6 − iG7) = G1G6 + i(G2G6 −G1G7)+G2G7

=
�
��i

2
G5 +G6G1 + i

(
−
�
��i

2
G4 +G6G2 +

�
��i

2
G4 −G7G1

)
−
�
��i

2
G5 +G7G2

= G6G1 + i(G6G2 −G7G1)+G7G2. (F.49)
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Proof that [U+, U−] = 3
2Y − I3:

U+U− − U−U+ = (G6 + iG7)(G6 − iG7)− (G6 − iG7)(G6 + iG7)

=��G
2
6 + i[G7,G6] +��G

2
7 − (��G2

6 + i[G6,G7] +��G
2
7)

= 2i[G7,G6] = −2

(
1

2
G3 −

√
3

2
G8

)
= 3

2
Y − I3. (F.50)

7.2 Ladder Operators on Antiquarks

For antiquarks V± are represented by the matrices (7.21)

(V+)′ = −(G4)+ i(G5) =
⎛
⎝

0 0 0
0 0 0

−1 0 0

⎞
⎠ ,

(V−)′ = −(G4)− i(G5) =
⎛
⎝

0 0 −1
0 0 0
0 0 0

⎞
⎠ , (F.51)

where we have used the matrices (7.6). Therefore

V+|u〉 = (V+)′
⎛
⎝

1
0
0

⎞
⎠ =

⎛
⎝

0
0

−1

⎞
⎠ = −|s〉 ,

V−|s〉 = (V−)′
⎛
⎝

0
0
1

⎞
⎠ =

⎛
⎝

−1
0
0

⎞
⎠ = −|u〉 . (F.52)

Similarly for (U±):

(U+)′ = −(G6)+ i(G7) =
⎛
⎝

0 0 0
0 0 0
0 −1 0

⎞
⎠ ,

(U−)′ = −(G6)− i(G7) =
⎛
⎝

0 0 0
0 0 −1
0 0 0

⎞
⎠ , (F.53)
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Thus

U+|d〉 = (U+)′
⎛
⎝

0
1
0

⎞
⎠ = −

⎛
⎝

0
0
1

⎞
⎠ = −|s〉 ,

U−|s〉 = (U−)′
⎛
⎝

0
0
1

⎞
⎠ = −

⎛
⎝

0
1
0

⎞
⎠ = −|d〉 , (F.54)

and for (I±):

(I+)′ = −(G1)+ i(G2) =
⎛
⎝

0 0 0
−1 0 0

0 0 0

⎞
⎠ ,

(I−)′ = −(G1)− i(G2) =
⎛
⎝

0 −1 0
0 0 0
0 0 0

⎞
⎠ (F.55)

hence

I+|u〉 = (I+)′
⎛
⎝

1
0
0

⎞
⎠ = −

⎛
⎝

0
1
0

⎞
⎠ = −|d〉 ,

I−|d〉 = (I−)′
⎛
⎝

0
1
0

⎞
⎠ = −

⎛
⎝

1
0
0

⎞
⎠ = −|u〉 . (F.56)

7.3 Radiative Kaon Decay

The wavefunctions are listed in Table 6.4. For K∗0 → K0γ :

MK∗0 = 1√
2

〈
ds − sd√

2
[↑↑]

∣∣∣∣e1ξ1s+1 + e2ξ2s+2

∣∣∣∣
ds + sd√

2

[↑↓ − ↓↑√
2

] 〉
.

(F.57)

The first and second terms give with ξ = 1
mu

and ξs = 1
ms

− e

4

(
−ξ

3
− ξs

3

)
= e

12
(ξ + ξs) and

e

4

(
ξ

3
+ ξs

3

)
= e

12
(ξ + ξs), (F.58)
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respectively, hence

MK∗0 = e

6
(ξ + ξs). (F.59)

For K∗+ → K+γ :

MK∗+ = 1√
2

〈
us − su√

2
[↑↑]

∣∣∣∣e1ξ1s+1 + e2ξ2s+2

∣∣∣∣
us + su√

2

[↑↓ − ↓↑√
2

] 〉
.

(F.60)

The first and second terms give

− e
4

(
ξ

3
− ξs

6

)
= − e

12

(
ξ + ξs

2

)
and

e

4

(
ξs

6
− ξ

3

)
= e

12

(
ξs

3
− ξ

)
, (F.61)

respectively, therefore

MK∗+ = e

6
(ξs − 2ξ). (F.62)

The ratio of partial widths is

R = �(K∗0 → K0γ )

�(K∗+ → K+γ )
=
(
ξ + ξs

2ξ − ξs
)2

=
(
r + 1

2r − 1

)2

(F.63)

with r ≡ ms
mu

. The experimental value R = 2.5 ± 0.3 leads to the mass ratio r =
1.20 ± 0.07.

8.1 Width of the ϒ(1S) Resonance

(a) The lepton masses are almost negligible compared to the ϒ(1S) mass and
therefore the decay branching ratios into the three lepton pairs should be almost
equal by virtue of lepton universality. The measured values are f (e+e−) =
2.38±0.11%, f (μ+μ−) = 2.48±0.01% and f (τ+τ−) = 2.60±0.10%. Let us
assume them equal to 2.5%.

(b) The decay branching ratio into hadrons is then f (h) = 1 - 3 × 0.025 = 92.5%.
This includes radiative decays (∼2%) into light mesons.

(c) The decay into (charged) leptons is mediated by the electromagnetic interaction,
that into hadrons by the (OZI suppressed) strong interaction via gluons.
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(d) The integrated cross section in Fig. F.1 is roughly equal to 240 nb·MeV. The
natural width can be calculated from (8.1) with M = 9460 MeV:

∫ ∞

−∞
σdE = 3

4
· 8π2

M2 f (e
+e−)f (h)� = 1.53 × 10−8 MeV−2 �. (F.64)

With 1 nb = 2.57 × 10−12 MeV−2, see the transformation of units (1.7), one
obtains the estimate � ∼ 40 keV, to be compared to the Particle Data value of
54 keV.

8.2 Van Royen-Weisskopf Formula

The coupling to the photon is eQ, where Q is the charge of the emitting quark
(Fig. F.2). Hence

|ρ0〉 = 1√
2
|dd − uu〉 ⇒ Q2 =

(
1√
2

[
−1

3
− 2

3

])2

= 1

2
,

|ω〉 = 1√
2
|dd + uu〉 ⇒ Q2 =

(
1√
2

[
−1

3
+ 2

3

])2

= 1

18
,

|φ〉 = −|ss〉 ⇒ Q2 =
(

−1

3

)2

= 1

9
,

|J/ψ(1S)〉 = |cc〉 ⇒ Q2 =
(

2

3

)2

= 4

9
,

|ϒ(1S)〉 = |bb〉 ⇒ Q2 =
(

−1

3

)2

= 1

9
. (F.65)

Therefore one predicts the ratios of partial widths

ρ0 : ω : φ : J/ψ(1S) : ϒ(1S) = 9 : 1 : 2 : 8 : 2, (F.66)

in approximate agreement with the data in Table F.1:

9 : 0.77 ± 0.03 : 1.61 ± 0.03 : 7.09 ± 0.18 : 1.71 ± 0.03. (F.67)
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9.1 Logarithmic and Harmonic Potentials

V (r) = κ ln
r

r0
⇒ V = d2V

dr2
+ 2

r

dV

dr
= − κ

r2
+ 2κ

r2
= κ

r2
> 0,

V (r) = br2 ⇒ V = 6b > 0, (F.68)

hence from (9.14) E(n, �) > E(n− 1, �+ 1), e.g. the 1P lies below the 2S (n = 1
node).

10.1 6 × 6∗, 3 × 6

The Young tableaux for 6∗ and 6 are given by (10.14) and (10.12) in Chap. 10, hence

= 6∗ × 6 = 144

144
+ 360

45
+ 360 × 6

5 × 4 × 2 × 2
= 1 + 8 + 27. (F.69)

For 3 × 6:

= 3 × 6 = 8 + 10. (F.70)

10.2 Two-Gluon Coupling

Let us couple the two SU(3)c tableaux of dimension 8 (instructions in Sect. 6.3):
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Hence 8c × 8c = 1c + 27c + 8c + 8c + 10c + 10∗
c .

11.1 f ′ → ηη Decay Amplitude

The octet and singlet couplings are given by, see (11.10, 11.11),

γ (f8 → ηη) = γ (f8 → 8 × 8) cos2 θ − 2g18 sin θ cos θ,

γ (f1 → ηη) = γ (f1 → 8 × 8) cos2 θ + g11 sin2 θ. (F.71)

One gets with the superposition |f ′〉 = |f8〉
√

2
3 − |f1〉

√
1
3 , copying from (11.13),

γ (f ′ → ηη) =
√

2

3
(−
√

1

5
g8 cos2 θ − 2 g18︸︷︷︸√

2
5 g8

sin θ cos θ)

−
√

1

3
(−
√

1

8
g1

︸ ︷︷ ︸√
2
5 g8

cos2 θ + g11︸︷︷︸√
2
5 g8

sin2 θ)

= g8

√
2

3

(
−
√

1

5
cos2 θ − 2

√
2

5
sin θ cos θ

)
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+g8

√
1

3

(
−
√

2

5
cos2 θ −

√
2

5
sin2 θ

)

= g8√
15
(−2

√
2 cos2 θ − 4 sin θ cos θ − √

2 sin2 θ)

= −g8

√
2

15
(
√

2 cos θ + sin θ)2. (F.72)

12.1 Flatté Coupled Channel Formula

According to (12.27) the production amplitude for channel 1 is

T1 = (1 − iK22ρ2)P1 + iK12ρ2P2

1 − ρ1ρ2D − i(ρ1K11 + ρ2K22)
. (F.73)

The K matrix components are

K11 = γ 2
1m0�

′
0


, K22 = γ 2

2m0�
′
0


, K12 = K21 = γ1γ2m0�

′
0


, (F.74)

where we have defined ≡ m2
0 −m2. With the couplings (12.29)

g1 ≡ γ1

√
m0�

′
0, g2 ≡ γ2

√
m0�

′
0, b ≡ β

√
m0�

′
0, (F.75)

the components of the K-matrix and P -vector become

K11 = g2
1


, K22 = g2

2


, K12 = g1g2


,

P1 = βγ1m0�
′
0


=
βg1

√
m0�

′
0


= bg1


,

P2 = βγ2m0�
′
0


=
βg2

√
m0�

′
0


= bg2


. (F.76)

Therefore with (F.73) andD = 0 one gets

T1 = 1



[
(− ig2

2ρ2)bg1 + ig1g2ρ2bg2

− iρ1g
2
1 − iρ2g

2
2

]

= bg1

− i(ρ1g
2
1 + ρ2g

2
2)

= bg1

m2
0 −m2 − i(ρ1g

2
1 + ρ2g

2
2)
. (F.77)
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13.1 Gell-Mann-Nishijima Formula

Q = i3 + B + S + B ′ + C + T
2

(F.78)

hence (by default B = S = B ′ = C = T = 0):

D+
s (cs) : Q = 1, i3 = 0, S = 1, C = 1,

K0(ds) : Q = 0, i3 = −1

2
, S = 1,

�+(uus) : Q = −1, i3 = −1, B = −1, S = 1

�+
c (udc) : Q = 1, i3 = 0, B = 1, C = 1,

 0
b(usb) : Q = 0, i3 = 1

2
, B = 1, S = −1, B ′ = −1,

t−quark : Q = 2

3
, i3 = 0, B = 1

3
, T = 1.

(F.79)

13.2 � and �0 Flavour Wavefunctions

Applying V− on the proton gives for the MA case

|ϕ〉 = V−
[

1√
2
|udu− duu〉

]

= 1√
2
|sdu+ uds − dsu− dus〉. (F.80)

Applying I− on �+ leads to

|ϕ′〉 = I−
[

1√
2
|usu− suu〉

]

= 1√
2
|dsu+ usd − sdu− sud〉. (F.81)

The state orthogonal to ϕ′ is given by

|�〉 = |ϕ′〉 − α|ϕ〉 (F.82)
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with

〈�|ϕ′〉 = 0 = 〈ϕ′|ϕ′〉 − α〈ϕ|ϕ′〉 = 2 + α ⇒ α = −2, (F.83)

hence

|�〉 = |ϕ′〉 + 2|ϕ〉 = 1√
2
|sdu+ 2uds − dsu− 2dus + usd − sud〉. (F.84)

After normalizing one obtains for the � and �0 in the MA case

|�〉 = 1

2
√

3
|sdu− dsu+ usd − sud + 2uds − 2dus〉, (F.85)

|�0〉 = 1

2
|dsu− sdu+ usd − sud〉. (F.86)

14.1 Magnetic Dipole Moment of the Nucleon

For the antisymmetric case 1√
2
|φMSχMA − φMAχMS〉 the proton wavefunction

would be given by

|p ↑〉 = 1√
2

1√
6

1√
2
[|udu+ duu− 2uud〉| ↑↓↑ − ↓↑↑〉

−|udu− duu〉| ↑↓↑ + ↓↑↑ −2 ↑↑↓〉]
= 1

2

1√
6

×2|duu ↑↓↑〉 − 2|udu ↓↑↑〉 − 2|uud ↑↓↑〉
+2|uud ↓↑↑〉 + 2|udu ↑↑↓〉 − 2|duu ↑↑↓〉. (F.87)

The spins of the u quarks are always antiparallel, hence only μd contributes to∑
μiσzi . Taking into account the orthonormality of the kets, one obtains by left-

multiplying with 〈p ↑ |

μp =
[

1

2

1√
6

]2

(4 × 6) μd = μd. (F.88)

The wavefunction of the neutron would be given by

|n ↑〉 = − 1√
2

1√
6

1√
2
[|udd + dud − 2ddu〉| ↑↓↑ − ↓↑↑〉

−|udd − dud〉| ↑↓↑ + ↓↑↑ −2 ↑↑↓〉]
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= −1

2

1√
6

×2|udd ↑↓↑〉 − 2|ddu ↑↓↑〉 + 2|ddu ↓↑↑〉
−2|dud ↓↑↑〉 − 2|udd ↑↑↓〉 + 2|dud ↑↑↓〉. (F.89)

The spins of the d quarks are always antiparallel, hence only μu contributes to∑
μiσzi . Hence we get again

μn =
[

1

2

1√
6

]2

(4 × 6) μu = μu. (F.90)

The prediction

μn

μp
= μu

μd
= −2, (F.91)

which follows from (F.88) and (F.90), differs from the symmetric quark model
prediction (14.15) and is in violent disagreement with data.

14.2 Magnetic Dipole Moment of the �−

The �− is a dds state. We therefore take the magnetic moment of the neu-
tron (14.13) and replace the u by an s quark:

μ�− = −1

3
μs + 4

3
μd = 1

9

(
e

2ms

)
− 4

9

( e
2m

)
. (F.92)

14.3 Magnetic Moment of the 	++

The magnetic moment of the++ (uuu) is given by:

μ++ =
3∑
i=1

〈++ ↑ |μiσzi |++ ↑〉 = 3 × 2

3

( e
2m

)

= 2μp = 5.58μN = 2.00 ± 0.06μp. (F.93)

The measurement (Bosshard, A., et al.: Phys. Rev. 44, 1962 (1991)) was performed
by measuring the left-right asymmetry in the reaction π+p → π+pγ with
298 MeV pions striking a polarized proton target. The scattered pions were analyzed
in a magnetic spectrometer, the proton detected in a scintillation counter array and
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the photons in a modular NaI detector. The result for the magnetic dipole moment
of the ++ is (1.62 ± 0.18) μp.

17.1 SU(4)f and SU(5)f

= 4 × 4 × 4 = 4∗ + 20 + 20 + 20 .

= 5 × 5 × 5 = 10∗ + 40 + 40 + 35 .

18.1 Polarization of the Proton in Unpolarized � → π−p

Decay

By analogy one gets from (18.20)

〈sx 〉 = Tr
1

2

(
0 1
1 0

)( |α0 − 1√
3
α1|2 0

0 |α0 + 1√
3
α1|2

)[
1

Trρf

]
= 0, (F.94)

and similarly for sy = 1
2σy .

18.2 J/ψ → μ+μ−

The decay J/ψ → μ+μ− is a parity conserving electromagnetic process with P =
−1, hence the angular momentum between the muons is � = 0 or 2, the muons
having opposite parities. Since the spin of the J/ψ is j = 1, the muon spins must
add to s = 1. The helicity amplitude is given by

Tλ1,λ2 = α0

〈
1λ

∣∣∣∣010λ

〉〈
1λ

∣∣∣∣
1

2

1

2
λ1,−λ2

〉
+ α2

〈
1λ

∣∣∣∣210λ

〉〈
1λ

∣∣∣∣
1

2

1

2
λ1,−λ2

〉
,

(F.95)
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Fig. F.3 In the decay
J/ψ → μ+μ− the muons
have opposite helicites, hence
λ = ±1

hence

T 1
2 ,− 1

2
= α0 + 1√

10
α2 = T− 1

2 ,
1
2

≡ A (F.96)

for the helicities λ = ±1. On the other hand, in the two helicity states λ = 0
the muon spins would point into opposite directions. This is not allowed by the
electromagnetic interaction which absorbs the photon (Fig. F.3), as a consequence
of the Dirac equation. The contributions from α0 and α2 are such that T 1

2 ,
1
2

vanishes,
and we are left with one helicity amplitude only. The transition matrix is

Mλ1,λ2;M = A

⎛
⎜⎜⎝

D1∗
11 D1∗

10 D1∗
1−1

0 0 0
0 0 0

D1∗−11 D1∗−10 D1∗−1−1

⎞
⎟⎟⎠ . (F.97)

In analogy to the nomenclature used for the photon, the spin projection of a
transversely polarized spin-1 particle is along (or opposite to) its flight direction.
Hence with ρ11 = 1 and ρi �=1 or j �=1 = 0 the angular distribution is given by

w(θ) = |A|2(|D1
11|2 + |D1−11|2) ∝

[(
1 + cos θ

2

)2

+
(

1 − cos θ

2

)2
]

⇒ w(θ) = 3
16π (1 + cos2 θ) . (F.98)

The same result is obtained with ρ−1−1 = 1 and hence (F.98) is valid for transversally
polarized J/ψ , independent of the probabilities ρ11 and ρ−1−1, in accord with
parity conservation. For a longitudinally polarized J/ψ (that is with spin projection
orthogonal to its flight direction) one gets with ρ00 = 1 and ρi �=0 or j �=0 = 0 the
distribution

w(θ) = |A|2(|D1
10|2 + |D1−10|2) ⇒ w(θ) = 3

8π sin2 θ . (F.99)
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The angular distribution for any spin density matrix can be found in Beneke, M.,
et al.: Phys. Rev. D 57, 4258 (1998).
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